Solve for x
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{578}
y\leq \frac{5\pi ^{3}}{17}
Solve for y
y=-\sqrt{2x}+\frac{5\pi ^{3}}{17}
x\geq 0
Graph
Share
Copied to clipboard
\frac{5\pi ^{3}}{17}-\sqrt{2x}=y
Swap sides so that all variable terms are on the left hand side.
-\sqrt{2x}=y-\frac{5\pi ^{3}}{17}
Subtract \frac{5\pi ^{3}}{17} from both sides.
-17\sqrt{2x}=17y-5\pi ^{3}
Multiply both sides of the equation by 17.
\frac{-17\sqrt{2x}}{-17}=\frac{17y-5\pi ^{3}}{-17}
Divide both sides by -17.
\sqrt{2x}=\frac{17y-5\pi ^{3}}{-17}
Dividing by -17 undoes the multiplication by -17.
\sqrt{2x}=-y+\frac{5\pi ^{3}}{17}
Divide 17y-5\pi ^{3} by -17.
2x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{289}
Square both sides of the equation.
\frac{2x}{2}=\frac{\left(5\pi ^{3}-17y\right)^{2}}{2\times 289}
Divide both sides by 2.
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{2\times 289}
Dividing by 2 undoes the multiplication by 2.
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{578}
Divide \frac{\left(-17y+5\pi ^{3}\right)^{2}}{289} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}