Solve for x
x=\frac{9y+4}{3\left(y+2\right)}
y\neq -2
Solve for y
y=-\frac{2\left(3x-2\right)}{3\left(x-3\right)}
x\neq 3
Graph
Share
Copied to clipboard
y\times 3\left(x-3\right)=4-6x
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right).
3yx-3y\times 3=4-6x
Use the distributive property to multiply y\times 3 by x-3.
3yx-9y=4-6x
Multiply -3 and 3 to get -9.
3yx-9y+6x=4
Add 6x to both sides.
3yx+6x=4+9y
Add 9y to both sides.
\left(3y+6\right)x=4+9y
Combine all terms containing x.
\left(3y+6\right)x=9y+4
The equation is in standard form.
\frac{\left(3y+6\right)x}{3y+6}=\frac{9y+4}{3y+6}
Divide both sides by 3y+6.
x=\frac{9y+4}{3y+6}
Dividing by 3y+6 undoes the multiplication by 3y+6.
x=\frac{9y+4}{3\left(y+2\right)}
Divide 9y+4 by 3y+6.
x=\frac{9y+4}{3\left(y+2\right)}\text{, }x\neq 3
Variable x cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}