Solve for x
x=-\frac{49y^{2}}{16}+18
y\geq 0
Solve for x (complex solution)
x=-\frac{49y^{2}}{16}+18
arg(y)<\pi \text{ or }y=0
Solve for y (complex solution)
y=\frac{4\sqrt{18-x}}{7}
Solve for y
y=\frac{4\sqrt{18-x}}{7}
x\leq 18
Graph
Share
Copied to clipboard
\frac{4}{7}\sqrt{18-x}=y
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{4}{7}\sqrt{-x+18}}{\frac{4}{7}}=\frac{y}{\frac{4}{7}}
Divide both sides of the equation by \frac{4}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
\sqrt{-x+18}=\frac{y}{\frac{4}{7}}
Dividing by \frac{4}{7} undoes the multiplication by \frac{4}{7}.
\sqrt{-x+18}=\frac{7y}{4}
Divide y by \frac{4}{7} by multiplying y by the reciprocal of \frac{4}{7}.
-x+18=\frac{49y^{2}}{16}
Square both sides of the equation.
-x+18-18=\frac{49y^{2}}{16}-18
Subtract 18 from both sides of the equation.
-x=\frac{49y^{2}}{16}-18
Subtracting 18 from itself leaves 0.
\frac{-x}{-1}=\frac{\frac{49y^{2}}{16}-18}{-1}
Divide both sides by -1.
x=\frac{\frac{49y^{2}}{16}-18}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-\frac{49y^{2}}{16}+18
Divide \frac{49y^{2}}{16}-18 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}