Solve for x
x=\frac{7y}{8}-3.675
Solve for y
y=\frac{8x}{7}+4.2
Graph
Share
Copied to clipboard
y=\frac{8}{2+5}x+4.2
Multiply 4 and 2 to get 8.
y=\frac{8}{7}x+4.2
Add 2 and 5 to get 7.
\frac{8}{7}x+4.2=y
Swap sides so that all variable terms are on the left hand side.
\frac{8}{7}x=y-4.2
Subtract 4.2 from both sides.
\frac{8}{7}x=y-\frac{21}{5}
The equation is in standard form.
\frac{\frac{8}{7}x}{\frac{8}{7}}=\frac{y-\frac{21}{5}}{\frac{8}{7}}
Divide both sides of the equation by \frac{8}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{21}{5}}{\frac{8}{7}}
Dividing by \frac{8}{7} undoes the multiplication by \frac{8}{7}.
x=\frac{7y}{8}-\frac{147}{40}
Divide y-\frac{21}{5} by \frac{8}{7} by multiplying y-\frac{21}{5} by the reciprocal of \frac{8}{7}.
y=\frac{8}{2+5}x+4.2
Multiply 4 and 2 to get 8.
y=\frac{8}{7}x+4.2
Add 2 and 5 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}