Solve for x
x=-\frac{2\left(1-3y\right)}{5y-3}
y\neq \frac{3}{5}
Solve for y
y=-\frac{2-3x}{5x-6}
x\neq \frac{6}{5}
Graph
Share
Copied to clipboard
y\left(5x-6\right)=3x-2
Variable x cannot be equal to \frac{6}{5} since division by zero is not defined. Multiply both sides of the equation by 5x-6.
5yx-6y=3x-2
Use the distributive property to multiply y by 5x-6.
5yx-6y-3x=-2
Subtract 3x from both sides.
5yx-3x=-2+6y
Add 6y to both sides.
\left(5y-3\right)x=-2+6y
Combine all terms containing x.
\left(5y-3\right)x=6y-2
The equation is in standard form.
\frac{\left(5y-3\right)x}{5y-3}=\frac{6y-2}{5y-3}
Divide both sides by 5y-3.
x=\frac{6y-2}{5y-3}
Dividing by 5y-3 undoes the multiplication by 5y-3.
x=\frac{2\left(3y-1\right)}{5y-3}
Divide -2+6y by 5y-3.
x=\frac{2\left(3y-1\right)}{5y-3}\text{, }x\neq \frac{6}{5}
Variable x cannot be equal to \frac{6}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}