Solve for y (complex solution)
y\neq 0
x=-\frac{\sqrt{2}}{2}\text{ or }x=\frac{\sqrt{2}}{2}
Solve for y
y\neq 0
x = \frac{\sqrt{2}}{2} = 0.7071067811865476
Solve for x (complex solution)
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
x=\frac{\sqrt{2}}{2}\approx 0.707106781\text{, }y\neq 0
Solve for x
x = \frac{\sqrt{2}}{2} = 0.7071067811865476
x=-\frac{\sqrt{2}}{2}\text{, }y\neq 0
Share
Copied to clipboard
y=\frac{3xy}{x\times 6x^{2}}
Variable y cannot be equal to 0 since division by zero is not defined. Divide \frac{3x}{x} by \frac{6x^{2}}{y} by multiplying \frac{3x}{x} by the reciprocal of \frac{6x^{2}}{y}.
y=\frac{y}{2x^{2}}
Cancel out 3x in both numerator and denominator.
y-\frac{y}{2x^{2}}=0
Subtract \frac{y}{2x^{2}} from both sides.
\frac{y\times 2x^{2}}{2x^{2}}-\frac{y}{2x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{2x^{2}}{2x^{2}}.
\frac{y\times 2x^{2}-y}{2x^{2}}=0
Since \frac{y\times 2x^{2}}{2x^{2}} and \frac{y}{2x^{2}} have the same denominator, subtract them by subtracting their numerators.
y\times 2x^{2}-y=0
Multiply both sides of the equation by 2x^{2}.
\left(2x^{2}-1\right)y=0
Combine all terms containing y.
y=0
Divide 0 by 2x^{2}-1.
y\in \emptyset
Variable y cannot be equal to 0.
y=\frac{3xy}{x\times 6x^{2}}
Variable y cannot be equal to 0 since division by zero is not defined. Divide \frac{3x}{x} by \frac{6x^{2}}{y} by multiplying \frac{3x}{x} by the reciprocal of \frac{6x^{2}}{y}.
y=\frac{y}{2x^{2}}
Cancel out 3x in both numerator and denominator.
y-\frac{y}{2x^{2}}=0
Subtract \frac{y}{2x^{2}} from both sides.
\frac{y\times 2x^{2}}{2x^{2}}-\frac{y}{2x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{2x^{2}}{2x^{2}}.
\frac{y\times 2x^{2}-y}{2x^{2}}=0
Since \frac{y\times 2x^{2}}{2x^{2}} and \frac{y}{2x^{2}} have the same denominator, subtract them by subtracting their numerators.
y\times 2x^{2}-y=0
Multiply both sides of the equation by 2x^{2}.
\left(2x^{2}-1\right)y=0
Combine all terms containing y.
y=0
Divide 0 by 2x^{2}-1.
y\in \emptyset
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}