Solve for y (complex solution)
y=\frac{1}{x^{2}+1}
x\neq -i\text{ and }x\neq i
Solve for y
y=\frac{1}{x^{2}+1}
Solve for x (complex solution)
x=-\sqrt{-1+\frac{1}{y}}
x=\sqrt{-1+\frac{1}{y}}\text{, }y\neq 0
Solve for x
x=\sqrt{-1+\frac{1}{y}}
x=-\sqrt{-1+\frac{1}{y}}\text{, }y>0\text{ and }y\leq 1
Graph
Share
Copied to clipboard
y-\frac{3-3x^{2}y}{3}=0
Subtract \frac{3-3x^{2}y}{3} from both sides.
3y-\left(3-3x^{2}y\right)=0
Multiply both sides of the equation by 3.
3y-3+3x^{2}y=0
To find the opposite of 3-3x^{2}y, find the opposite of each term.
3y+3x^{2}y=3
Add 3 to both sides. Anything plus zero gives itself.
\left(3+3x^{2}\right)y=3
Combine all terms containing y.
\left(3x^{2}+3\right)y=3
The equation is in standard form.
\frac{\left(3x^{2}+3\right)y}{3x^{2}+3}=\frac{3}{3x^{2}+3}
Divide both sides by 3+3x^{2}.
y=\frac{3}{3x^{2}+3}
Dividing by 3+3x^{2} undoes the multiplication by 3+3x^{2}.
y=\frac{1}{\left(x-i\right)\left(x+i\right)}
Divide 3 by 3+3x^{2}.
y-\frac{3-3x^{2}y}{3}=0
Subtract \frac{3-3x^{2}y}{3} from both sides.
3y-\left(3-3x^{2}y\right)=0
Multiply both sides of the equation by 3.
3y-3+3x^{2}y=0
To find the opposite of 3-3x^{2}y, find the opposite of each term.
3y+3x^{2}y=3
Add 3 to both sides. Anything plus zero gives itself.
\left(3+3x^{2}\right)y=3
Combine all terms containing y.
\left(3x^{2}+3\right)y=3
The equation is in standard form.
\frac{\left(3x^{2}+3\right)y}{3x^{2}+3}=\frac{3}{3x^{2}+3}
Divide both sides by 3+3x^{2}.
y=\frac{3}{3x^{2}+3}
Dividing by 3+3x^{2} undoes the multiplication by 3+3x^{2}.
y=\frac{1}{x^{2}+1}
Divide 3 by 3+3x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}