Solve for x
x=\frac{14y+3}{2\left(y+7\right)}
y\neq -7
Solve for y
y=-\frac{14x-3}{2\left(x-7\right)}
x\neq 7
Graph
Share
Copied to clipboard
y\times 2\left(x-7\right)=3-14x
Variable x cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-7\right).
2yx-7y\times 2=3-14x
Use the distributive property to multiply y\times 2 by x-7.
2yx-14y=3-14x
Multiply -7 and 2 to get -14.
2yx-14y+14x=3
Add 14x to both sides.
2yx+14x=3+14y
Add 14y to both sides.
\left(2y+14\right)x=3+14y
Combine all terms containing x.
\left(2y+14\right)x=14y+3
The equation is in standard form.
\frac{\left(2y+14\right)x}{2y+14}=\frac{14y+3}{2y+14}
Divide both sides by 2y+14.
x=\frac{14y+3}{2y+14}
Dividing by 2y+14 undoes the multiplication by 2y+14.
x=\frac{14y+3}{2\left(y+7\right)}
Divide 14y+3 by 2y+14.
x=\frac{14y+3}{2\left(y+7\right)}\text{, }x\neq 7
Variable x cannot be equal to 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}