Solve for x
x=-\frac{4y+1}{3\left(y+1\right)}
y\neq -1
Solve for y
y=-\frac{3x+1}{3x+4}
x\neq -\frac{4}{3}
Graph
Share
Copied to clipboard
y\left(3x+4\right)=3+\left(3x+4\right)\left(-1\right)
Variable x cannot be equal to -\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 3x+4.
3yx+4y=3+\left(3x+4\right)\left(-1\right)
Use the distributive property to multiply y by 3x+4.
3yx+4y=3-3x-4
Use the distributive property to multiply 3x+4 by -1.
3yx+4y=-1-3x
Subtract 4 from 3 to get -1.
3yx+4y+3x=-1
Add 3x to both sides.
3yx+3x=-1-4y
Subtract 4y from both sides.
\left(3y+3\right)x=-1-4y
Combine all terms containing x.
\left(3y+3\right)x=-4y-1
The equation is in standard form.
\frac{\left(3y+3\right)x}{3y+3}=\frac{-4y-1}{3y+3}
Divide both sides by 3y+3.
x=\frac{-4y-1}{3y+3}
Dividing by 3y+3 undoes the multiplication by 3y+3.
x=-\frac{4y+1}{3\left(y+1\right)}
Divide -1-4y by 3y+3.
x=-\frac{4y+1}{3\left(y+1\right)}\text{, }x\neq -\frac{4}{3}
Variable x cannot be equal to -\frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}