Solve for n
\left\{\begin{matrix}n=\frac{2x^{2}+5x+7y}{3y}\text{, }&x\neq -\frac{5}{2}\text{ and }x\neq 0\text{ and }y\neq 0\\n\neq \frac{7}{3}\text{, }&\left(x=0\text{ or }x=-\frac{5}{2}\right)\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
x=\frac{\sqrt{24ny-56y+25}-5}{4}
x=\frac{-\sqrt{24ny-56y+25}-5}{4}\text{, }n\neq \frac{7}{3}
Solve for x
x=\frac{\sqrt{24ny-56y+25}-5}{4}
x=\frac{-\sqrt{24ny-56y+25}-5}{4}\text{, }\left(n>\frac{7}{3}\text{ or }y\leq -\frac{25}{24n-56}\right)\text{ and }\left(n<\frac{7}{3}\text{ or }y\geq -\frac{25}{24n-56}\right)\text{ and }n\neq \frac{7}{3}
Graph
Share
Copied to clipboard
y\left(3n-7\right)=\left(2x+5\right)x
Variable n cannot be equal to \frac{7}{3} since division by zero is not defined. Multiply both sides of the equation by 3n-7.
3yn-7y=\left(2x+5\right)x
Use the distributive property to multiply y by 3n-7.
3yn-7y=2x^{2}+5x
Use the distributive property to multiply 2x+5 by x.
3yn=2x^{2}+5x+7y
Add 7y to both sides.
\frac{3yn}{3y}=\frac{2x^{2}+5x+7y}{3y}
Divide both sides by 3y.
n=\frac{2x^{2}+5x+7y}{3y}
Dividing by 3y undoes the multiplication by 3y.
n=\frac{2x^{2}+5x+7y}{3y}\text{, }n\neq \frac{7}{3}
Variable n cannot be equal to \frac{7}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}