Solve for u
u=\frac{3y}{y+2}
y\neq -2
Solve for y
y=\frac{2u}{3-u}
u\neq 3
Graph
Share
Copied to clipboard
y\left(-u+3\right)=2u
Variable u cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by -u+3.
-yu+3y=2u
Use the distributive property to multiply y by -u+3.
-yu+3y-2u=0
Subtract 2u from both sides.
-yu-2u=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
\left(-y-2\right)u=-3y
Combine all terms containing u.
\frac{\left(-y-2\right)u}{-y-2}=-\frac{3y}{-y-2}
Divide both sides by -y-2.
u=-\frac{3y}{-y-2}
Dividing by -y-2 undoes the multiplication by -y-2.
u=\frac{3y}{y+2}
Divide -3y by -y-2.
u=\frac{3y}{y+2}\text{, }u\neq 3
Variable u cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}