Solve for I
I=\frac{3P_{y}y}{2}
P_{y}\neq 0\text{ and }P_{x}\neq 0
Solve for P_x
P_{x}\neq 0
\left(y=0\text{ and }I=0\text{ and }P_{y}\neq 0\right)\text{ or }\left(P_{y}=\frac{2I}{3y}\text{ and }y\neq 0\text{ and }I\neq 0\right)
Graph
Share
Copied to clipboard
y\times 3P_{x}P_{y}=3P_{x}\times 2P_{x}\times \frac{I}{3P_{x}}
Multiply both sides of the equation by 3P_{x}P_{y}, the least common multiple of P_{y},3P_{x}.
y\times 3P_{x}P_{y}=3P_{x}^{2}\times 2\times \frac{I}{3P_{x}}
Multiply P_{x} and P_{x} to get P_{x}^{2}.
y\times 3P_{x}P_{y}=6P_{x}^{2}\times \frac{I}{3P_{x}}
Multiply 3 and 2 to get 6.
y\times 3P_{x}P_{y}=\frac{6I}{3P_{x}}P_{x}^{2}
Express 6\times \frac{I}{3P_{x}} as a single fraction.
y\times 3P_{x}P_{y}=\frac{2I}{P_{x}}P_{x}^{2}
Cancel out 3 in both numerator and denominator.
y\times 3P_{x}P_{y}=\frac{2IP_{x}^{2}}{P_{x}}
Express \frac{2I}{P_{x}}P_{x}^{2} as a single fraction.
y\times 3P_{x}P_{y}=2IP_{x}
Cancel out P_{x} in both numerator and denominator.
2IP_{x}=y\times 3P_{x}P_{y}
Swap sides so that all variable terms are on the left hand side.
2P_{x}I=3P_{x}P_{y}y
The equation is in standard form.
\frac{2P_{x}I}{2P_{x}}=\frac{3P_{x}P_{y}y}{2P_{x}}
Divide both sides by 2P_{x}.
I=\frac{3P_{x}P_{y}y}{2P_{x}}
Dividing by 2P_{x} undoes the multiplication by 2P_{x}.
I=\frac{3P_{y}y}{2}
Divide 3yP_{x}P_{y} by 2P_{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}