Solve for a
a=-\frac{4\left(y-4\right)}{7-y}
y\neq 7
Solve for y
y=-\frac{7a-16}{4-a}
a\neq 4
Graph
Share
Copied to clipboard
y\left(-a+4\right)=2-7\left(a-2\right)
Variable a cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -a+4.
-ya+4y=2-7\left(a-2\right)
Use the distributive property to multiply y by -a+4.
-ya+4y=2-7a+14
Use the distributive property to multiply -7 by a-2.
-ya+4y=16-7a
Add 2 and 14 to get 16.
-ya+4y+7a=16
Add 7a to both sides.
-ya+7a=16-4y
Subtract 4y from both sides.
\left(-y+7\right)a=16-4y
Combine all terms containing a.
\left(7-y\right)a=16-4y
The equation is in standard form.
\frac{\left(7-y\right)a}{7-y}=\frac{16-4y}{7-y}
Divide both sides by -y+7.
a=\frac{16-4y}{7-y}
Dividing by -y+7 undoes the multiplication by -y+7.
a=\frac{4\left(4-y\right)}{7-y}
Divide 16-4y by -y+7.
a=\frac{4\left(4-y\right)}{7-y}\text{, }a\neq 4
Variable a cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}