Solve for a
a=-\frac{xy}{2}+x
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{2a}{2-y}\text{, }&a\neq 0\text{ and }y\neq 2\\x\neq 0\text{, }&a=0\text{ and }y=2\end{matrix}\right.
Graph
Share
Copied to clipboard
yx=2\left(x-a\right)
Multiply both sides of the equation by x.
yx=2x-2a
Use the distributive property to multiply 2 by x-a.
2x-2a=yx
Swap sides so that all variable terms are on the left hand side.
-2a=yx-2x
Subtract 2x from both sides.
-2a=xy-2x
The equation is in standard form.
\frac{-2a}{-2}=\frac{x\left(y-2\right)}{-2}
Divide both sides by -2.
a=\frac{x\left(y-2\right)}{-2}
Dividing by -2 undoes the multiplication by -2.
a=-\frac{xy}{2}+x
Divide x\left(-2+y\right) by -2.
yx=2\left(x-a\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
yx=2x-2a
Use the distributive property to multiply 2 by x-a.
yx-2x=-2a
Subtract 2x from both sides.
\left(y-2\right)x=-2a
Combine all terms containing x.
\frac{\left(y-2\right)x}{y-2}=-\frac{2a}{y-2}
Divide both sides by y-2.
x=-\frac{2a}{y-2}
Dividing by y-2 undoes the multiplication by y-2.
x=-\frac{2a}{y-2}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}