Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{2m-7y}{2w}\text{, }&w\neq 0\\t\in \mathrm{C}\text{, }&y=\frac{2m}{7}\text{ and }w=0\end{matrix}\right.
Solve for m
m=-tw+\frac{7y}{2}
Solve for t
\left\{\begin{matrix}t=-\frac{2m-7y}{2w}\text{, }&w\neq 0\\t\in \mathrm{R}\text{, }&y=\frac{2m}{7}\text{ and }w=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\frac{2}{7}tw+\frac{2}{7}m
Use the distributive property to multiply \frac{2}{7} by tw+m.
\frac{2}{7}tw+\frac{2}{7}m=y
Swap sides so that all variable terms are on the left hand side.
\frac{2}{7}tw=y-\frac{2}{7}m
Subtract \frac{2}{7}m from both sides.
\frac{2w}{7}t=-\frac{2m}{7}+y
The equation is in standard form.
\frac{7\times \frac{2w}{7}t}{2w}=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
Divide both sides by \frac{2}{7}w.
t=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
Dividing by \frac{2}{7}w undoes the multiplication by \frac{2}{7}w.
t=\frac{7y-2m}{2w}
Divide y-\frac{2m}{7} by \frac{2}{7}w.
y=\frac{2}{7}tw+\frac{2}{7}m
Use the distributive property to multiply \frac{2}{7} by tw+m.
\frac{2}{7}tw+\frac{2}{7}m=y
Swap sides so that all variable terms are on the left hand side.
\frac{2}{7}m=y-\frac{2}{7}tw
Subtract \frac{2}{7}tw from both sides.
\frac{2}{7}m=-\frac{2tw}{7}+y
The equation is in standard form.
\frac{\frac{2}{7}m}{\frac{2}{7}}=\frac{-\frac{2tw}{7}+y}{\frac{2}{7}}
Divide both sides of the equation by \frac{2}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=\frac{-\frac{2tw}{7}+y}{\frac{2}{7}}
Dividing by \frac{2}{7} undoes the multiplication by \frac{2}{7}.
m=-tw+\frac{7y}{2}
Divide y-\frac{2tw}{7} by \frac{2}{7} by multiplying y-\frac{2tw}{7} by the reciprocal of \frac{2}{7}.
y=\frac{2}{7}tw+\frac{2}{7}m
Use the distributive property to multiply \frac{2}{7} by tw+m.
\frac{2}{7}tw+\frac{2}{7}m=y
Swap sides so that all variable terms are on the left hand side.
\frac{2}{7}tw=y-\frac{2}{7}m
Subtract \frac{2}{7}m from both sides.
\frac{2w}{7}t=-\frac{2m}{7}+y
The equation is in standard form.
\frac{7\times \frac{2w}{7}t}{2w}=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
Divide both sides by \frac{2}{7}w.
t=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
Dividing by \frac{2}{7}w undoes the multiplication by \frac{2}{7}w.
t=\frac{7y-2m}{2w}
Divide y-\frac{2m}{7} by \frac{2}{7}w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}