Solve for h
h=\frac{2-2y-3xy}{3x+2}
x\neq -\frac{2}{3}
Solve for x
x=\frac{2\left(1-h-y\right)}{3\left(y+h\right)}
y\neq -h
Graph
Share
Copied to clipboard
y\left(3x+2\right)=2-h\left(3x+2\right)
Multiply both sides of the equation by 3x+2.
3yx+2y=2-h\left(3x+2\right)
Use the distributive property to multiply y by 3x+2.
3yx+2y=2-3hx-2h
Use the distributive property to multiply -h by 3x+2.
2-3hx-2h=3yx+2y
Swap sides so that all variable terms are on the left hand side.
-3hx-2h=3yx+2y-2
Subtract 2 from both sides.
\left(-3x-2\right)h=3yx+2y-2
Combine all terms containing h.
\left(-3x-2\right)h=3xy+2y-2
The equation is in standard form.
\frac{\left(-3x-2\right)h}{-3x-2}=\frac{3xy+2y-2}{-3x-2}
Divide both sides by -3x-2.
h=\frac{3xy+2y-2}{-3x-2}
Dividing by -3x-2 undoes the multiplication by -3x-2.
h=-\frac{3xy+2y-2}{3x+2}
Divide 3yx+2y-2 by -3x-2.
y\left(3x+2\right)=2-h\left(3x+2\right)
Variable x cannot be equal to -\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3x+2.
3yx+2y=2-h\left(3x+2\right)
Use the distributive property to multiply y by 3x+2.
3yx+2y=2-3hx-2h
Use the distributive property to multiply -h by 3x+2.
3yx+2y+3hx=2-2h
Add 3hx to both sides.
3yx+3hx=2-2h-2y
Subtract 2y from both sides.
\left(3y+3h\right)x=2-2h-2y
Combine all terms containing x.
\frac{\left(3y+3h\right)x}{3y+3h}=\frac{2-2h-2y}{3y+3h}
Divide both sides by 3y+3h.
x=\frac{2-2h-2y}{3y+3h}
Dividing by 3y+3h undoes the multiplication by 3y+3h.
x=\frac{2\left(1-h-y\right)}{3\left(y+h\right)}
Divide 2-2h-2y by 3y+3h.
x=\frac{2\left(1-h-y\right)}{3\left(y+h\right)}\text{, }x\neq -\frac{2}{3}
Variable x cannot be equal to -\frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}