Type a math problem

This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

Type a math problem

Solve for x

x=\frac{3\left(y-4\right)}{2}

$x=23(y−4) $

Steps for Solving Linear Equation

y = \frac { 2 } { 3 } x + 4

$y=32 x+4$

Swap sides so that all variable terms are on the left hand side.

Swap sides so that all variable terms are on the left hand side.

\frac{2}{3}x+4=y

$32 x+4=y$

Subtract 4 from both sides.

Subtract $4$ from both sides.

\frac{2}{3}x=y-4

$32 x=y−4$

Divide both sides of the equation by \frac{2}{3}\approx 0.666666667, which is the same as multiplying both sides by the reciprocal of the fraction.

Divide both sides of the equation by $32 ≈0.666666667$, which is the same as multiplying both sides by the reciprocal of the fraction.

\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{y-4}{\frac{2}{3}}

$32 32 x =32 y−4 $

Dividing by \frac{2}{3}\approx 0.666666667 undoes the multiplication by \frac{2}{3}\approx 0.666666667.

Dividing by $32 ≈0.666666667$ undoes the multiplication by $32 ≈0.666666667$.

x=\frac{y-4}{\frac{2}{3}}

$x=32 y−4 $

Divide y-4 by \frac{2}{3}\approx 0.666666667 by multiplying y-4 by the reciprocal of \frac{2}{3}\approx 0.666666667.

Divide $y−4$ by $32 ≈0.666666667$ by multiplying $y−4$ by the reciprocal of $32 ≈0.666666667$.

x=\frac{3y}{2}-6

$x=23y −6$

Solve for y

y=\frac{2\left(x+6\right)}{3}

$y=32(x+6) $

Assign y

y≔\frac{2\left(x+6\right)}{3}

$y:=32(x+6) $

Graph

Giving is as easy as 1, 2, 3

Get 1,000 points to donate to a school of your choice when you join Give With Bing

Share

Copy

Copied to clipboard

\frac{2}{3}x+4=y

Swap sides so that all variable terms are on the left hand side.

\frac{2}{3}x=y-4

Subtract 4 from both sides.

\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{y-4}{\frac{2}{3}}

Divide both sides of the equation by \frac{2}{3}\approx 0.666666667, which is the same as multiplying both sides by the reciprocal of the fraction.

x=\frac{y-4}{\frac{2}{3}}

Dividing by \frac{2}{3}\approx 0.666666667 undoes the multiplication by \frac{2}{3}\approx 0.666666667.

x=\frac{3y}{2}-6

Divide y-4 by \frac{2}{3}\approx 0.666666667 by multiplying y-4 by the reciprocal of \frac{2}{3}\approx 0.666666667.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $

Back to top