Solve for x
x=-\frac{4-y}{y-2}
y\neq 2
Solve for y
y=-\frac{2\left(x-2\right)}{1-x}
x\neq 1
Graph
Share
Copied to clipboard
y\left(-x+1\right)=2+\left(-x+1\right)\times 2
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
-yx+y=2+\left(-x+1\right)\times 2
Use the distributive property to multiply y by -x+1.
-yx+y=2-2x+2
Use the distributive property to multiply -x+1 by 2.
-yx+y=4-2x
Add 2 and 2 to get 4.
-yx+y+2x=4
Add 2x to both sides.
-yx+2x=4-y
Subtract y from both sides.
\left(-y+2\right)x=4-y
Combine all terms containing x.
\left(2-y\right)x=4-y
The equation is in standard form.
\frac{\left(2-y\right)x}{2-y}=\frac{4-y}{2-y}
Divide both sides by -y+2.
x=\frac{4-y}{2-y}
Dividing by -y+2 undoes the multiplication by -y+2.
x=\frac{4-y}{2-y}\text{, }x\neq 1
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}