Solve for x
x=-\frac{9\left(k-1\right)\left(4yk^{2}+9ky+9k^{2}+13\right)}{k\left(4k+9\right)\left(13k^{2}+3\right)}
k\neq 1\text{ and }k\neq -\frac{9}{4}\text{ and }k\neq 0
Share
Copied to clipboard
y\times 9k\left(k-1\right)\left(4k+9\right)=\left(-9k-4k^{2}\right)\left(13k^{2}+3\right)x-\left(9k-9\right)\left(9k^{2}+13\right)
Multiply both sides of the equation by 9k\left(k-1\right)\left(4k+9\right), the least common multiple of 9-9k,4k^{2}+9k.
\left(9yk^{2}-y\times 9k\right)\left(4k+9\right)=\left(-9k-4k^{2}\right)\left(13k^{2}+3\right)x-\left(9k-9\right)\left(9k^{2}+13\right)
Use the distributive property to multiply y\times 9k by k-1.
\left(9yk^{2}-9yk\right)\left(4k+9\right)=\left(-9k-4k^{2}\right)\left(13k^{2}+3\right)x-\left(9k-9\right)\left(9k^{2}+13\right)
Multiply -1 and 9 to get -9.
36yk^{3}+45yk^{2}-81yk=\left(-9k-4k^{2}\right)\left(13k^{2}+3\right)x-\left(9k-9\right)\left(9k^{2}+13\right)
Use the distributive property to multiply 9yk^{2}-9yk by 4k+9 and combine like terms.
36yk^{3}+45yk^{2}-81yk=\left(-117k^{3}-27k-52k^{4}-12k^{2}\right)x-\left(9k-9\right)\left(9k^{2}+13\right)
Use the distributive property to multiply -9k-4k^{2} by 13k^{2}+3.
36yk^{3}+45yk^{2}-81yk=-117k^{3}x-27kx-52k^{4}x-12k^{2}x-\left(9k-9\right)\left(9k^{2}+13\right)
Use the distributive property to multiply -117k^{3}-27k-52k^{4}-12k^{2} by x.
36yk^{3}+45yk^{2}-81yk=-117k^{3}x-27kx-52k^{4}x-12k^{2}x-\left(81k^{3}+117k-81k^{2}-117\right)
Use the distributive property to multiply 9k-9 by 9k^{2}+13.
36yk^{3}+45yk^{2}-81yk=-117k^{3}x-27kx-52k^{4}x-12k^{2}x-81k^{3}-117k+81k^{2}+117
To find the opposite of 81k^{3}+117k-81k^{2}-117, find the opposite of each term.
-117k^{3}x-27kx-52k^{4}x-12k^{2}x-81k^{3}-117k+81k^{2}+117=36yk^{3}+45yk^{2}-81yk
Swap sides so that all variable terms are on the left hand side.
-117k^{3}x-27kx-52k^{4}x-12k^{2}x-117k+81k^{2}+117=36yk^{3}+45yk^{2}-81yk+81k^{3}
Add 81k^{3} to both sides.
-117k^{3}x-27kx-52k^{4}x-12k^{2}x+81k^{2}+117=36yk^{3}+45yk^{2}-81yk+81k^{3}+117k
Add 117k to both sides.
-117k^{3}x-27kx-52k^{4}x-12k^{2}x+117=36yk^{3}+45yk^{2}-81yk+81k^{3}+117k-81k^{2}
Subtract 81k^{2} from both sides.
-117k^{3}x-27kx-52k^{4}x-12k^{2}x=36yk^{3}+45yk^{2}-81yk+81k^{3}+117k-81k^{2}-117
Subtract 117 from both sides.
\left(-117k^{3}-27k-52k^{4}-12k^{2}\right)x=36yk^{3}+45yk^{2}-81yk+81k^{3}+117k-81k^{2}-117
Combine all terms containing x.
\left(-52k^{4}-117k^{3}-12k^{2}-27k\right)x=36yk^{3}+45yk^{2}-81ky+81k^{3}-81k^{2}+117k-117
The equation is in standard form.
\frac{\left(-52k^{4}-117k^{3}-12k^{2}-27k\right)x}{-52k^{4}-117k^{3}-12k^{2}-27k}=\frac{9\left(k-1\right)\left(4yk^{2}+9ky+9k^{2}+13\right)}{-52k^{4}-117k^{3}-12k^{2}-27k}
Divide both sides by -117k^{3}-27k-52k^{4}-12k^{2}.
x=\frac{9\left(k-1\right)\left(4yk^{2}+9ky+9k^{2}+13\right)}{-52k^{4}-117k^{3}-12k^{2}-27k}
Dividing by -117k^{3}-27k-52k^{4}-12k^{2} undoes the multiplication by -117k^{3}-27k-52k^{4}-12k^{2}.
x=-\frac{9\left(k-1\right)\left(4yk^{2}+9ky+9k^{2}+13\right)}{k\left(4k+9\right)\left(13k^{2}+3\right)}
Divide 9\left(-1+k\right)\left(13+9yk+9k^{2}+4yk^{2}\right) by -117k^{3}-27k-52k^{4}-12k^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}