Skip to main content
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\frac{1}{6}\left(1-\left(1-x\right)^{3}\right)
Anything divided by one gives itself.
y=\frac{1}{6}\left(1-\left(1+3\left(-x\right)+3\left(-x\right)^{2}+\left(-x\right)^{3}\right)\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1-x\right)^{3}.
y=\frac{1}{6}\left(1-\left(1+3\left(-x\right)+3x^{2}+\left(-x\right)^{3}\right)\right)
Calculate -x to the power of 2 and get x^{2}.
y=\frac{1}{6}\left(1-1-3\left(-x\right)-3x^{2}-\left(-x\right)^{3}\right)
To find the opposite of 1+3\left(-x\right)+3x^{2}+\left(-x\right)^{3}, find the opposite of each term.
y=\frac{1}{6}\left(-3\left(-x\right)-3x^{2}-\left(-x\right)^{3}\right)
Subtract 1 from 1 to get 0.
y=\frac{1}{6}\left(3x-3x^{2}-\left(-x\right)^{3}\right)
Multiply -3 and -1 to get 3.
y=\frac{1}{2}x-\frac{1}{2}x^{2}-\frac{1}{6}\left(-x\right)^{3}
Use the distributive property to multiply \frac{1}{6} by 3x-3x^{2}-\left(-x\right)^{3}.
y=\frac{1}{2}x-\frac{1}{2}x^{2}-\frac{1}{6}\left(-1\right)^{3}x^{3}
Expand \left(-x\right)^{3}.
y=\frac{1}{2}x-\frac{1}{2}x^{2}-\frac{1}{6}\left(-1\right)x^{3}
Calculate -1 to the power of 3 and get -1.
y=\frac{1}{2}x-\frac{1}{2}x^{2}+\frac{1}{6}x^{3}
Multiply -\frac{1}{6} and -1 to get \frac{1}{6}.