Solve for u
\left\{\begin{matrix}u=-\frac{4y\left(3y^{4}-1\right)}{x}\text{, }&x\neq 0\\u\in \mathrm{R}\text{, }&\left(y=0\text{ or }|y|=\frac{3^{\frac{3}{4}}}{3}\right)\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{4y\left(3y^{4}-1\right)}{u}\text{, }&u\neq 0\\x\in \mathrm{R}\text{, }&\left(y=0\text{ or }|y|=\frac{3^{\frac{3}{4}}}{3}\right)\text{ and }u=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{1}{4}ux+3y^{5}=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}ux=y-3y^{5}
Subtract 3y^{5} from both sides.
\frac{x}{4}u=y-3y^{5}
The equation is in standard form.
\frac{4\times \frac{x}{4}u}{x}=\frac{4\left(y-3y^{5}\right)}{x}
Divide both sides by \frac{1}{4}x.
u=\frac{4\left(y-3y^{5}\right)}{x}
Dividing by \frac{1}{4}x undoes the multiplication by \frac{1}{4}x.
u=\frac{4y\left(1-3y^{4}\right)}{x}
Divide y-3y^{5} by \frac{1}{4}x.
\frac{1}{4}ux+3y^{5}=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}ux=y-3y^{5}
Subtract 3y^{5} from both sides.
\frac{u}{4}x=y-3y^{5}
The equation is in standard form.
\frac{4\times \frac{u}{4}x}{u}=\frac{4\left(y-3y^{5}\right)}{u}
Divide both sides by \frac{1}{4}u.
x=\frac{4\left(y-3y^{5}\right)}{u}
Dividing by \frac{1}{4}u undoes the multiplication by \frac{1}{4}u.
x=\frac{4y\left(1-3y^{4}\right)}{u}
Divide y-3y^{5} by \frac{1}{4}u.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}