Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{3y}{s^{2}}\text{, }&s\neq 0\\h\in \mathrm{C}\text{, }&y=0\text{ and }s=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{3y}{s^{2}}\text{, }&s\neq 0\\h\in \mathrm{R}\text{, }&y=0\text{ and }s=0\end{matrix}\right.
Solve for s (complex solution)
\left\{\begin{matrix}s=-h^{-\frac{1}{2}}\sqrt{3y}\text{; }s=h^{-\frac{1}{2}}\sqrt{3y}\text{, }&h\neq 0\\s\in \mathrm{C}\text{, }&y=0\text{ and }h=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=\sqrt{\frac{3y}{h}}\text{; }s=-\sqrt{\frac{3y}{h}}\text{, }&\left(y\geq 0\text{ and }h>0\right)\text{ or }\left(y\leq 0\text{ and }h<0\right)\\s\in \mathrm{R}\text{, }&y=0\text{ and }h=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{1}{3}s^{2}h=y
Swap sides so that all variable terms are on the left hand side.
\frac{s^{2}}{3}h=y
The equation is in standard form.
\frac{3\times \frac{s^{2}}{3}h}{s^{2}}=\frac{3y}{s^{2}}
Divide both sides by \frac{1}{3}s^{2}.
h=\frac{3y}{s^{2}}
Dividing by \frac{1}{3}s^{2} undoes the multiplication by \frac{1}{3}s^{2}.
\frac{1}{3}s^{2}h=y
Swap sides so that all variable terms are on the left hand side.
\frac{s^{2}}{3}h=y
The equation is in standard form.
\frac{3\times \frac{s^{2}}{3}h}{s^{2}}=\frac{3y}{s^{2}}
Divide both sides by \frac{1}{3}s^{2}.
h=\frac{3y}{s^{2}}
Dividing by \frac{1}{3}s^{2} undoes the multiplication by \frac{1}{3}s^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}