Solve for y
y=\frac{3\sqrt{22}+1}{197}\approx 0.076503793
Assign y
y≔\frac{3\sqrt{22}+1}{197}
Graph
Share
Copied to clipboard
y=\frac{3\sqrt{22}+1}{\left(3\sqrt{22}-1\right)\left(3\sqrt{22}+1\right)}
Rationalize the denominator of \frac{1}{3\sqrt{22}-1} by multiplying numerator and denominator by 3\sqrt{22}+1.
y=\frac{3\sqrt{22}+1}{\left(3\sqrt{22}\right)^{2}-1^{2}}
Consider \left(3\sqrt{22}-1\right)\left(3\sqrt{22}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=\frac{3\sqrt{22}+1}{3^{2}\left(\sqrt{22}\right)^{2}-1^{2}}
Expand \left(3\sqrt{22}\right)^{2}.
y=\frac{3\sqrt{22}+1}{9\left(\sqrt{22}\right)^{2}-1^{2}}
Calculate 3 to the power of 2 and get 9.
y=\frac{3\sqrt{22}+1}{9\times 22-1^{2}}
The square of \sqrt{22} is 22.
y=\frac{3\sqrt{22}+1}{198-1^{2}}
Multiply 9 and 22 to get 198.
y=\frac{3\sqrt{22}+1}{198-1}
Calculate 1 to the power of 2 and get 1.
y=\frac{3\sqrt{22}+1}{197}
Subtract 1 from 198 to get 197.
y=\frac{3}{197}\sqrt{22}+\frac{1}{197}
Divide each term of 3\sqrt{22}+1 by 197 to get \frac{3}{197}\sqrt{22}+\frac{1}{197}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}