Skip to main content
Solve for y
Tick mark Image
Assign y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\frac{3\sqrt{22}+1}{\left(3\sqrt{22}-1\right)\left(3\sqrt{22}+1\right)}
Rationalize the denominator of \frac{1}{3\sqrt{22}-1} by multiplying numerator and denominator by 3\sqrt{22}+1.
y=\frac{3\sqrt{22}+1}{\left(3\sqrt{22}\right)^{2}-1^{2}}
Consider \left(3\sqrt{22}-1\right)\left(3\sqrt{22}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=\frac{3\sqrt{22}+1}{3^{2}\left(\sqrt{22}\right)^{2}-1^{2}}
Expand \left(3\sqrt{22}\right)^{2}.
y=\frac{3\sqrt{22}+1}{9\left(\sqrt{22}\right)^{2}-1^{2}}
Calculate 3 to the power of 2 and get 9.
y=\frac{3\sqrt{22}+1}{9\times 22-1^{2}}
The square of \sqrt{22} is 22.
y=\frac{3\sqrt{22}+1}{198-1^{2}}
Multiply 9 and 22 to get 198.
y=\frac{3\sqrt{22}+1}{198-1}
Calculate 1 to the power of 2 and get 1.
y=\frac{3\sqrt{22}+1}{197}
Subtract 1 from 198 to get 197.
y=\frac{3}{197}\sqrt{22}+\frac{1}{197}
Divide each term of 3\sqrt{22}+1 by 197 to get \frac{3}{197}\sqrt{22}+\frac{1}{197}.