Solve for t
t=-\frac{2y+1}{1-2y}
y\neq \frac{1}{2}
Solve for y
y=\frac{t+1}{2\left(t-1\right)}
t\neq 1
Share
Copied to clipboard
y\times 2\left(t-1\right)=2\left(t-1\right)\times \frac{1}{2}+2
Variable t cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(t-1\right), the least common multiple of 2,t-1.
2yt-y\times 2=2\left(t-1\right)\times \frac{1}{2}+2
Use the distributive property to multiply y\times 2 by t-1.
2yt-2y=2\left(t-1\right)\times \frac{1}{2}+2
Multiply -1 and 2 to get -2.
2yt-2y=t-1+2
Multiply 2 and \frac{1}{2} to get 1.
2yt-2y=t+1
Add -1 and 2 to get 1.
2yt-2y-t=1
Subtract t from both sides.
2yt-t=1+2y
Add 2y to both sides.
\left(2y-1\right)t=1+2y
Combine all terms containing t.
\left(2y-1\right)t=2y+1
The equation is in standard form.
\frac{\left(2y-1\right)t}{2y-1}=\frac{2y+1}{2y-1}
Divide both sides by 2y-1.
t=\frac{2y+1}{2y-1}
Dividing by 2y-1 undoes the multiplication by 2y-1.
t=\frac{2y+1}{2y-1}\text{, }t\neq 1
Variable t cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}