Solve for x
\left\{\begin{matrix}x=\frac{2y+1}{y\left(3-z\right)}\text{, }&y\neq 0\text{ and }z\neq 3\text{ and }\left(z=0\text{ or }y\neq -\frac{3}{2z}\right)\\x\neq \frac{2}{3}\text{, }&y=-\frac{1}{2}\text{ and }z=3\end{matrix}\right.
Solve for y
y=\frac{1}{-xz+3x-2}
\left(z=3\text{ or }x\neq \frac{2}{3-z}\right)\text{ and }x\neq \frac{2}{3}
Share
Copied to clipboard
y\left(3x-2\right)=1+xyz
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-2.
3yx-2y=1+xyz
Use the distributive property to multiply y by 3x-2.
3yx-2y-xyz=1
Subtract xyz from both sides.
3yx-xyz=1+2y
Add 2y to both sides.
\left(3y-yz\right)x=1+2y
Combine all terms containing x.
\left(3y-yz\right)x=2y+1
The equation is in standard form.
\frac{\left(3y-yz\right)x}{3y-yz}=\frac{2y+1}{3y-yz}
Divide both sides by -yz+3y.
x=\frac{2y+1}{3y-yz}
Dividing by -yz+3y undoes the multiplication by -yz+3y.
x=\frac{2y+1}{y\left(3-z\right)}
Divide 2y+1 by -yz+3y.
x=\frac{2y+1}{y\left(3-z\right)}\text{, }x\neq \frac{2}{3}
Variable x cannot be equal to \frac{2}{3}.
y-\frac{1+xyz}{3x-2}=0
Subtract \frac{1+xyz}{3x-2} from both sides.
\frac{y\left(3x-2\right)}{3x-2}-\frac{1+xyz}{3x-2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{3x-2}{3x-2}.
\frac{y\left(3x-2\right)-\left(1+xyz\right)}{3x-2}=0
Since \frac{y\left(3x-2\right)}{3x-2} and \frac{1+xyz}{3x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{3yx-2y-1-xyz}{3x-2}=0
Do the multiplications in y\left(3x-2\right)-\left(1+xyz\right).
3yx-2y-1-xyz=0
Multiply both sides of the equation by 3x-2.
3yx-2y-xyz=1
Add 1 to both sides. Anything plus zero gives itself.
\left(3x-2-xz\right)y=1
Combine all terms containing y.
\left(-xz+3x-2\right)y=1
The equation is in standard form.
\frac{\left(-xz+3x-2\right)y}{-xz+3x-2}=\frac{1}{-xz+3x-2}
Divide both sides by 3x-2-xz.
y=\frac{1}{-xz+3x-2}
Dividing by 3x-2-xz undoes the multiplication by 3x-2-xz.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}