Solve for y
y = \frac{6281}{120} = 52\frac{41}{120} \approx 52.341666667
Assign y
y≔\frac{6281}{120}
Graph
Share
Copied to clipboard
y=-\frac{7}{48}\times 10+53.8
Fraction \frac{-7}{48} can be rewritten as -\frac{7}{48} by extracting the negative sign.
y=\frac{-7\times 10}{48}+53.8
Express -\frac{7}{48}\times 10 as a single fraction.
y=\frac{-70}{48}+53.8
Multiply -7 and 10 to get -70.
y=-\frac{35}{24}+53.8
Reduce the fraction \frac{-70}{48} to lowest terms by extracting and canceling out 2.
y=-\frac{35}{24}+\frac{269}{5}
Convert decimal number 53.8 to fraction \frac{538}{10}. Reduce the fraction \frac{538}{10} to lowest terms by extracting and canceling out 2.
y=-\frac{175}{120}+\frac{6456}{120}
Least common multiple of 24 and 5 is 120. Convert -\frac{35}{24} and \frac{269}{5} to fractions with denominator 120.
y=\frac{-175+6456}{120}
Since -\frac{175}{120} and \frac{6456}{120} have the same denominator, add them by adding their numerators.
y=\frac{6281}{120}
Add -175 and 6456 to get 6281.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}