Solve for x
x=-\frac{y+8}{y+5}
y\neq -5
Solve for y
y=-\frac{5x+8}{x+1}
x\neq -1
Graph
Share
Copied to clipboard
y\left(x+1\right)=-3+\left(x+1\right)\left(-5\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
yx+y=-3+\left(x+1\right)\left(-5\right)
Use the distributive property to multiply y by x+1.
yx+y=-3-5x-5
Use the distributive property to multiply x+1 by -5.
yx+y=-8-5x
Subtract 5 from -3 to get -8.
yx+y+5x=-8
Add 5x to both sides.
yx+5x=-8-y
Subtract y from both sides.
\left(y+5\right)x=-8-y
Combine all terms containing x.
\left(y+5\right)x=-y-8
The equation is in standard form.
\frac{\left(y+5\right)x}{y+5}=\frac{-y-8}{y+5}
Divide both sides by y+5.
x=\frac{-y-8}{y+5}
Dividing by y+5 undoes the multiplication by y+5.
x=-\frac{y+8}{y+5}
Divide -8-y by y+5.
x=-\frac{y+8}{y+5}\text{, }x\neq -1
Variable x cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}