Solve for x
x=\frac{4-2y}{9}
Solve for y
y=-\frac{9x}{2}+2
Graph
Share
Copied to clipboard
y=\frac{-\frac{3}{2}x}{\frac{1}{3}}+\frac{\frac{2}{3}}{\frac{1}{3}}
Divide each term of -\frac{3}{2}x+\frac{2}{3} by \frac{1}{3} to get \frac{-\frac{3}{2}x}{\frac{1}{3}}+\frac{\frac{2}{3}}{\frac{1}{3}}.
y=-\frac{9}{2}x+\frac{\frac{2}{3}}{\frac{1}{3}}
Divide -\frac{3}{2}x by \frac{1}{3} to get -\frac{9}{2}x.
y=-\frac{9}{2}x+\frac{2}{3}\times 3
Divide \frac{2}{3} by \frac{1}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{1}{3}.
y=-\frac{9}{2}x+2
Multiply \frac{2}{3} and 3 to get 2.
-\frac{9}{2}x+2=y
Swap sides so that all variable terms are on the left hand side.
-\frac{9}{2}x=y-2
Subtract 2 from both sides.
\frac{-\frac{9}{2}x}{-\frac{9}{2}}=\frac{y-2}{-\frac{9}{2}}
Divide both sides of the equation by -\frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-2}{-\frac{9}{2}}
Dividing by -\frac{9}{2} undoes the multiplication by -\frac{9}{2}.
x=\frac{4-2y}{9}
Divide y-2 by -\frac{9}{2} by multiplying y-2 by the reciprocal of -\frac{9}{2}.
y=\frac{-\frac{3}{2}x}{\frac{1}{3}}+\frac{\frac{2}{3}}{\frac{1}{3}}
Divide each term of -\frac{3}{2}x+\frac{2}{3} by \frac{1}{3} to get \frac{-\frac{3}{2}x}{\frac{1}{3}}+\frac{\frac{2}{3}}{\frac{1}{3}}.
y=-\frac{9}{2}x+\frac{\frac{2}{3}}{\frac{1}{3}}
Divide -\frac{3}{2}x by \frac{1}{3} to get -\frac{9}{2}x.
y=-\frac{9}{2}x+\frac{2}{3}\times 3
Divide \frac{2}{3} by \frac{1}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{1}{3}.
y=-\frac{9}{2}x+2
Multiply \frac{2}{3} and 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}