Solve for x
x=\frac{7\left(2y+1\right)}{3y+1}
y\neq -\frac{1}{2}\text{ and }y\neq -\frac{1}{3}
Solve for y
y=-\frac{x-7}{3x-14}
x\neq \frac{14}{3}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
yx=\left(7-x\right)\left(2y+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
yx=14y+7-2yx-x
Use the distributive property to multiply 7-x by 2y+1.
yx+2yx=14y+7-x
Add 2yx to both sides.
3yx=14y+7-x
Combine yx and 2yx to get 3yx.
3yx+x=14y+7
Add x to both sides.
\left(3y+1\right)x=14y+7
Combine all terms containing x.
\frac{\left(3y+1\right)x}{3y+1}=\frac{14y+7}{3y+1}
Divide both sides by 3y+1.
x=\frac{14y+7}{3y+1}
Dividing by 3y+1 undoes the multiplication by 3y+1.
x=\frac{7\left(2y+1\right)}{3y+1}
Divide 14y+7 by 3y+1.
x=\frac{7\left(2y+1\right)}{3y+1}\text{, }x\neq 0
Variable x cannot be equal to 0.
y=\frac{14y+7-2yx-x}{x}
Use the distributive property to multiply 7-x by 2y+1.
y-\frac{14y+7-2yx-x}{x}=0
Subtract \frac{14y+7-2yx-x}{x} from both sides.
\frac{yx}{x}-\frac{14y+7-2yx-x}{x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{x}{x}.
\frac{yx-\left(14y+7-2yx-x\right)}{x}=0
Since \frac{yx}{x} and \frac{14y+7-2yx-x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{yx-14y-7+2xy+x}{x}=0
Do the multiplications in yx-\left(14y+7-2yx-x\right).
\frac{-7+3yx+x-14y}{x}=0
Combine like terms in yx-14y-7+2xy+x.
-7+3yx+x-14y=0
Multiply both sides of the equation by x.
3yx+x-14y=7
Add 7 to both sides. Anything plus zero gives itself.
3yx-14y=7-x
Subtract x from both sides.
\left(3x-14\right)y=7-x
Combine all terms containing y.
\frac{\left(3x-14\right)y}{3x-14}=\frac{7-x}{3x-14}
Divide both sides by 3x-14.
y=\frac{7-x}{3x-14}
Dividing by 3x-14 undoes the multiplication by 3x-14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}