Solve for x
x\neq 0
\left(arg(-ix)<\pi \text{ and }x\neq 0\text{ and }y=-i\right)\text{ or }\left(arg(ix)<\pi \text{ and }x\neq 0\text{ and }y=i\right)
Solve for y
y=\frac{\sqrt{-x^{2}}}{x}
x\neq 0
Share
Copied to clipboard
yx=\sqrt{-x^{2}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
yx-\sqrt{-x^{2}}=0
Subtract \sqrt{-x^{2}} from both sides.
-\sqrt{-x^{2}}=-yx
Subtract yx from both sides of the equation.
\sqrt{-x^{2}}=yx
Cancel out -1 on both sides.
\left(\sqrt{-x^{2}}\right)^{2}=\left(yx\right)^{2}
Square both sides of the equation.
-x^{2}=\left(yx\right)^{2}
Calculate \sqrt{-x^{2}} to the power of 2 and get -x^{2}.
-x^{2}=y^{2}x^{2}
Expand \left(yx\right)^{2}.
-x^{2}-y^{2}x^{2}=0
Subtract y^{2}x^{2} from both sides.
-x^{2}y^{2}-x^{2}=0
Reorder the terms.
\left(-y^{2}-1\right)x^{2}=0
Combine all terms containing x.
x^{2}=\frac{0}{-y^{2}-1}
Dividing by -y^{2}-1 undoes the multiplication by -y^{2}-1.
x^{2}=0
Divide 0 by -y^{2}-1.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
y=\frac{\sqrt{-0^{2}}}{0}
Substitute 0 for x in the equation y=\frac{\sqrt{-x^{2}}}{x}. The expression is undefined.
x\in \emptyset
Equation \sqrt{-x^{2}}=xy has no solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}