Solve for x
x\neq 0
y=-1+\frac{1}{a}\text{ and }a\neq 0
Solve for a
a=\frac{1}{y+1}
y\neq -1\text{ and }x\neq 0
Graph
Share
Copied to clipboard
yx=\frac{x}{a\times 1}-x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
yx=\frac{x}{a\times 1}-\frac{xa\times 1}{a\times 1}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{a\times 1}{a\times 1}.
yx=\frac{x-xa}{a\times 1}
Since \frac{x}{a\times 1} and \frac{xa}{a} have the same denominator, subtract them by subtracting their numerators.
yx-\frac{x-xa}{a\times 1}=0
Subtract \frac{x-xa}{a\times 1} from both sides.
\frac{yxa\times 1}{a\times 1}-\frac{x-xa}{a\times 1}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply yx times \frac{a\times 1}{a\times 1}.
\frac{yxa\times 1-\left(x-xa\right)}{a\times 1}=0
Since \frac{yxa\times 1}{a\times 1} and \frac{x-xa}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{yxa-x+xa}{a\times 1}=0
Do the multiplications in yxa\times 1-\left(x-xa\right).
yxa-x+xa=0
Multiply both sides of the equation by a.
\left(ya-1+a\right)x=0
Combine all terms containing x.
\left(ay+a-1\right)x=0
The equation is in standard form.
x=0
Divide 0 by ya-1+a.
x\in \emptyset
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}