Solve for x
x=\frac{5y+3}{4y-5}
y\neq \frac{5}{4}
Solve for y
y=\frac{5x+3}{4x-5}
x\neq \frac{5}{4}
Graph
Share
Copied to clipboard
y=\frac{\frac{1}{2}\left(5x+3\right)}{\frac{1}{2}\left(4x-5\right)}
Factor the expressions that are not already factored in \frac{\frac{5}{2}x+\frac{3}{2}}{2x-\frac{5}{2}}.
y=\frac{5x+3}{\left(\frac{1}{2}\right)^{0}\left(4x-5\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
y=\frac{5x+3}{1\left(4x-5\right)}
Calculate \frac{1}{2} to the power of 0 and get 1.
y=\frac{5x+3}{4x-5}
Use the distributive property to multiply 1 by 4x-5.
\frac{5x+3}{4x-5}=y
Swap sides so that all variable terms are on the left hand side.
5x+3=y\left(4x-5\right)
Variable x cannot be equal to \frac{5}{4} since division by zero is not defined. Multiply both sides of the equation by 4x-5.
5x+3=4yx-5y
Use the distributive property to multiply y by 4x-5.
5x+3-4yx=-5y
Subtract 4yx from both sides.
5x-4yx=-5y-3
Subtract 3 from both sides.
\left(5-4y\right)x=-5y-3
Combine all terms containing x.
\frac{\left(5-4y\right)x}{5-4y}=\frac{-5y-3}{5-4y}
Divide both sides by 5-4y.
x=\frac{-5y-3}{5-4y}
Dividing by 5-4y undoes the multiplication by 5-4y.
x=-\frac{5y+3}{5-4y}
Divide -5y-3 by 5-4y.
x=-\frac{5y+3}{5-4y}\text{, }x\neq \frac{5}{4}
Variable x cannot be equal to \frac{5}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}