Solve for y, x
x=\frac{1}{2}=0.5
y=\frac{4}{5}=0.8
Graph
Share
Copied to clipboard
y=\frac{\frac{1}{\frac{1}{2}}+\frac{2}{\frac{1}{2}-3}}{4\times \frac{1}{2}-3}+2
Consider the first equation. Insert the known values of variables into the equation.
y=\frac{1\times 2+\frac{2}{\frac{1}{2}-3}}{4\times \frac{1}{2}-3}+2
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
y=\frac{2+\frac{2}{\frac{1}{2}-3}}{4\times \frac{1}{2}-3}+2
Multiply 1 and 2 to get 2.
y=\frac{2+\frac{2}{-\frac{5}{2}}}{4\times \frac{1}{2}-3}+2
Subtract 3 from \frac{1}{2} to get -\frac{5}{2}.
y=\frac{2+2\left(-\frac{2}{5}\right)}{4\times \frac{1}{2}-3}+2
Divide 2 by -\frac{5}{2} by multiplying 2 by the reciprocal of -\frac{5}{2}.
y=\frac{2-\frac{4}{5}}{4\times \frac{1}{2}-3}+2
Multiply 2 and -\frac{2}{5} to get -\frac{4}{5}.
y=\frac{\frac{6}{5}}{4\times \frac{1}{2}-3}+2
Subtract \frac{4}{5} from 2 to get \frac{6}{5}.
y=\frac{\frac{6}{5}}{2-3}+2
Multiply 4 and \frac{1}{2} to get 2.
y=\frac{\frac{6}{5}}{-1}+2
Subtract 3 from 2 to get -1.
y=\frac{6}{5\left(-1\right)}+2
Express \frac{\frac{6}{5}}{-1} as a single fraction.
y=\frac{6}{-5}+2
Multiply 5 and -1 to get -5.
y=-\frac{6}{5}+2
Fraction \frac{6}{-5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
y=\frac{4}{5}
Add -\frac{6}{5} and 2 to get \frac{4}{5}.
y=\frac{4}{5} x=\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}