Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{y}{etx}\text{, }&t\neq 0\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&\left(x=0\text{ or }t=0\right)\text{ and }y=0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{y}{epx}\text{, }&p\neq 0\text{ and }x\neq 0\\t\in \mathrm{C}\text{, }&\left(x=0\text{ or }p=0\right)\text{ and }y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{y}{etx}\text{, }&t\neq 0\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&\left(x=0\text{ or }t=0\right)\text{ and }y=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{y}{epx}\text{, }&p\neq 0\text{ and }x\neq 0\\t\in \mathrm{R}\text{, }&\left(x=0\text{ or }p=0\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
exp\left(-t\right)=y
Swap sides so that all variable terms are on the left hand side.
-eptx=y
Reorder the terms.
\left(-etx\right)p=y
The equation is in standard form.
\frac{\left(-etx\right)p}{-etx}=\frac{y}{-etx}
Divide both sides by -etx.
p=\frac{y}{-etx}
Dividing by -etx undoes the multiplication by -etx.
p=-\frac{y}{etx}
Divide y by -etx.
exp\left(-t\right)=y
Swap sides so that all variable terms are on the left hand side.
-eptx=y
Reorder the terms.
\left(-epx\right)t=y
The equation is in standard form.
\frac{\left(-epx\right)t}{-epx}=\frac{y}{-epx}
Divide both sides by -epx.
t=\frac{y}{-epx}
Dividing by -epx undoes the multiplication by -epx.
t=-\frac{y}{epx}
Divide y by -epx.
exp\left(-t\right)=y
Swap sides so that all variable terms are on the left hand side.
-eptx=y
Reorder the terms.
\left(-etx\right)p=y
The equation is in standard form.
\frac{\left(-etx\right)p}{-etx}=\frac{y}{-etx}
Divide both sides by -etx.
p=\frac{y}{-etx}
Dividing by -etx undoes the multiplication by -etx.
p=-\frac{y}{etx}
Divide y by -etx.
exp\left(-t\right)=y
Swap sides so that all variable terms are on the left hand side.
-eptx=y
Reorder the terms.
\left(-epx\right)t=y
The equation is in standard form.
\frac{\left(-epx\right)t}{-epx}=\frac{y}{-epx}
Divide both sides by -epx.
t=\frac{y}{-epx}
Dividing by -epx undoes the multiplication by -epx.
t=-\frac{y}{epx}
Divide y by -epx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}