Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{y\left(2-x\right)}{ex\left(x+5\right)}\text{, }&x\neq -5\text{ and }x\neq 0\text{ and }x\neq 2\\p\in \mathrm{C}\text{, }&\left(x=0\text{ or }x=-5\right)\text{ and }y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{y\left(2-x\right)}{ex\left(x+5\right)}\text{, }&x\neq -5\text{ and }x\neq 0\text{ and }x\neq 2\\p\in \mathrm{R}\text{, }&\left(x=0\text{ or }x=-5\right)\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{y^{2}-18epy+25\left(ep\right)^{2}}-5ep+y}{2ep}\text{; }x=\frac{-\sqrt{y^{2}-18epy+25\left(ep\right)^{2}}-5ep+y}{2ep}\text{, }&p\neq 0\\x\neq 2\text{, }&y=0\text{ and }p=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{y^{2}-18epy+25\left(ep\right)^{2}}-5ep+y}{2ep}\text{; }x=\frac{-\sqrt{y^{2}-18epy+25\left(ep\right)^{2}}-5ep+y}{2ep}\text{, }&p\neq 0\text{ and }\left(y\geq 2e\sqrt{14}|p|+9ep\text{ or }y\leq -2e\sqrt{14}|p|+9ep\right)\\x\neq 2\text{, }&y=0\text{ and }p=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y\left(x-2\right)=exp\left(x+5\right)
Multiply both sides of the equation by x-2.
yx-2y=exp\left(x+5\right)
Use the distributive property to multiply y by x-2.
yx-2y=epx^{2}+5exp
Use the distributive property to multiply exp by x+5.
epx^{2}+5exp=yx-2y
Swap sides so that all variable terms are on the left hand side.
\left(ex^{2}+5ex\right)p=yx-2y
Combine all terms containing p.
\left(ex^{2}+5ex\right)p=xy-2y
The equation is in standard form.
\frac{\left(ex^{2}+5ex\right)p}{ex^{2}+5ex}=\frac{y\left(x-2\right)}{ex^{2}+5ex}
Divide both sides by 5xe+ex^{2}.
p=\frac{y\left(x-2\right)}{ex^{2}+5ex}
Dividing by 5xe+ex^{2} undoes the multiplication by 5xe+ex^{2}.
p=\frac{y\left(x-2\right)}{ex\left(x+5\right)}
Divide y\left(-2+x\right) by 5xe+ex^{2}.
y\left(x-2\right)=exp\left(x+5\right)
Multiply both sides of the equation by x-2.
yx-2y=exp\left(x+5\right)
Use the distributive property to multiply y by x-2.
yx-2y=epx^{2}+5exp
Use the distributive property to multiply exp by x+5.
epx^{2}+5exp=yx-2y
Swap sides so that all variable terms are on the left hand side.
\left(ex^{2}+5ex\right)p=yx-2y
Combine all terms containing p.
\left(ex^{2}+5ex\right)p=xy-2y
The equation is in standard form.
\frac{\left(ex^{2}+5ex\right)p}{ex^{2}+5ex}=\frac{y\left(x-2\right)}{ex^{2}+5ex}
Divide both sides by 5xe+ex^{2}.
p=\frac{y\left(x-2\right)}{ex^{2}+5ex}
Dividing by 5xe+ex^{2} undoes the multiplication by 5xe+ex^{2}.
p=\frac{y\left(x-2\right)}{ex\left(x+5\right)}
Divide y\left(-2+x\right) by 5xe+ex^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}