Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{yx^{2}}{e\left(2x-3\right)}\text{, }&x\neq \frac{3}{2}\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&x=\frac{3}{2}\text{ and }y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{yx^{2}}{e\left(2x-3\right)}\text{, }&x\neq \frac{3}{2}\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&x=\frac{3}{2}\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{e}\left(\sqrt{p\left(3y+ep\right)}+\sqrt{e}p\right)}{y}\text{; }x=-\frac{\sqrt{e}\left(-\sqrt{p\left(3y+ep\right)}+\sqrt{e}p\right)}{y}\text{, }&y\neq 0\text{ and }p\neq 0\\x=\frac{3}{2}\text{, }&y=0\text{ and }p\neq 0\\x\neq 0\text{, }&y=0\text{ and }p=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{e}\left(\sqrt{p\left(3y+ep\right)}+\sqrt{e}p\right)}{y}\text{; }x=-\frac{\sqrt{e}\left(-\sqrt{p\left(3y+ep\right)}+\sqrt{e}p\right)}{y}\text{, }&\left(p\neq 0\text{ and }y=-\frac{ep}{3}\right)\text{ or }\left(y\neq 0\text{ and }y\geq -\frac{ep}{3}\text{ and }p>0\right)\text{ or }\left(y\neq 0\text{ and }y\leq -\frac{ep}{3}\text{ and }p<0\right)\\x=\frac{3}{2}\text{, }&y=0\text{ and }p\neq 0\\x\neq 0\text{, }&y=0\text{ and }p=0\end{matrix}\right.
Graph
Share
Copied to clipboard
yx^{3}=exp\left(\frac{3}{x^{3}}-\frac{2}{x^{2}}\right)x^{3}
Multiply both sides of the equation by x^{3}, the least common multiple of x^{3},x^{2}.
yx^{3}=ex^{4}p\left(\frac{3}{x^{3}}-\frac{2}{x^{2}}\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
yx^{3}=ex^{4}p\left(\frac{3}{x^{3}}-\frac{2x}{x^{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and x^{2} is x^{3}. Multiply \frac{2}{x^{2}} times \frac{x}{x}.
yx^{3}=ex^{4}p\times \frac{3-2x}{x^{3}}
Since \frac{3}{x^{3}} and \frac{2x}{x^{3}} have the same denominator, subtract them by subtracting their numerators.
yx^{3}=\frac{e\left(3-2x\right)}{x^{3}}x^{4}p
Express e\times \frac{3-2x}{x^{3}} as a single fraction.
yx^{3}=\frac{3e-2ex}{x^{3}}x^{4}p
Use the distributive property to multiply e by 3-2x.
yx^{3}=\frac{\left(3e-2ex\right)x^{4}}{x^{3}}p
Express \frac{3e-2ex}{x^{3}}x^{4} as a single fraction.
yx^{3}=x\left(-2ex+3e\right)p
Cancel out x^{3} in both numerator and denominator.
x\left(-2ex+3e\right)p=yx^{3}
Swap sides so that all variable terms are on the left hand side.
\left(-2ex^{2}+3xe\right)p=yx^{3}
Use the distributive property to multiply x by -2ex+3e.
\left(3ex-2ex^{2}\right)p=yx^{3}
The equation is in standard form.
\frac{\left(3ex-2ex^{2}\right)p}{3ex-2ex^{2}}=\frac{yx^{3}}{3ex-2ex^{2}}
Divide both sides by -2ex^{2}+3xe.
p=\frac{yx^{3}}{3ex-2ex^{2}}
Dividing by -2ex^{2}+3xe undoes the multiplication by -2ex^{2}+3xe.
p=\frac{yx^{2}}{e\left(3-2x\right)}
Divide yx^{3} by -2ex^{2}+3xe.
yx^{3}=exp\left(\frac{3}{x^{3}}-\frac{2}{x^{2}}\right)x^{3}
Multiply both sides of the equation by x^{3}, the least common multiple of x^{3},x^{2}.
yx^{3}=ex^{4}p\left(\frac{3}{x^{3}}-\frac{2}{x^{2}}\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
yx^{3}=ex^{4}p\left(\frac{3}{x^{3}}-\frac{2x}{x^{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and x^{2} is x^{3}. Multiply \frac{2}{x^{2}} times \frac{x}{x}.
yx^{3}=ex^{4}p\times \frac{3-2x}{x^{3}}
Since \frac{3}{x^{3}} and \frac{2x}{x^{3}} have the same denominator, subtract them by subtracting their numerators.
yx^{3}=\frac{e\left(3-2x\right)}{x^{3}}x^{4}p
Express e\times \frac{3-2x}{x^{3}} as a single fraction.
yx^{3}=\frac{3e-2ex}{x^{3}}x^{4}p
Use the distributive property to multiply e by 3-2x.
yx^{3}=\frac{\left(3e-2ex\right)x^{4}}{x^{3}}p
Express \frac{3e-2ex}{x^{3}}x^{4} as a single fraction.
yx^{3}=x\left(-2ex+3e\right)p
Cancel out x^{3} in both numerator and denominator.
x\left(-2ex+3e\right)p=yx^{3}
Swap sides so that all variable terms are on the left hand side.
\left(-2ex^{2}+3xe\right)p=yx^{3}
Use the distributive property to multiply x by -2ex+3e.
\left(3ex-2ex^{2}\right)p=yx^{3}
The equation is in standard form.
\frac{\left(3ex-2ex^{2}\right)p}{3ex-2ex^{2}}=\frac{yx^{3}}{3ex-2ex^{2}}
Divide both sides by -2ex^{2}+3xe.
p=\frac{yx^{3}}{3ex-2ex^{2}}
Dividing by -2ex^{2}+3xe undoes the multiplication by -2ex^{2}+3xe.
p=\frac{yx^{2}}{e\left(3-2x\right)}
Divide yx^{3} by -2ex^{2}+3xe.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}