y = \arctan ( 1 - x ^ { 2 } ) \frac { 1 } { x } d y
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{x}{\arctan(1-x^{2})}\text{, }&x\neq 1\text{ and }x\neq -1\text{ and }x\neq 0\\d\in \mathrm{C}\text{, }&y=0\text{ and }x\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{x}{\arctan(1-x^{2})}\text{, }&|x|\neq 1\text{ and }x\neq 0\\d\in \mathrm{R}\text{, }&y=0\text{ and }x\neq 0\end{matrix}\right.
Share
Copied to clipboard
yx=\arctan(1-x^{2})\times 1dy
Multiply both sides of the equation by x.
\arctan(1-x^{2})\times 1dy=yx
Swap sides so that all variable terms are on the left hand side.
dy\arctan(-x^{2}+1)=xy
Reorder the terms.
y\arctan(1-x^{2})d=xy
The equation is in standard form.
\frac{y\arctan(1-x^{2})d}{y\arctan(1-x^{2})}=\frac{xy}{y\arctan(1-x^{2})}
Divide both sides by y\arctan(-x^{2}+1).
d=\frac{xy}{y\arctan(1-x^{2})}
Dividing by y\arctan(-x^{2}+1) undoes the multiplication by y\arctan(-x^{2}+1).
d=\frac{x}{\arctan(1-x^{2})}
Divide xy by y\arctan(-x^{2}+1).
yx=\arctan(1-x^{2})\times 1dy
Multiply both sides of the equation by x.
\arctan(1-x^{2})\times 1dy=yx
Swap sides so that all variable terms are on the left hand side.
dy\arctan(-x^{2}+1)=xy
Reorder the terms.
y\arctan(1-x^{2})d=xy
The equation is in standard form.
\frac{y\arctan(1-x^{2})d}{y\arctan(1-x^{2})}=\frac{xy}{y\arctan(1-x^{2})}
Divide both sides by y\arctan(-x^{2}+1).
d=\frac{xy}{y\arctan(1-x^{2})}
Dividing by y\arctan(-x^{2}+1) undoes the multiplication by y\arctan(-x^{2}+1).
d=\frac{x}{\arctan(1-x^{2})}
Divide xy by y\arctan(-x^{2}+1).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}