Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\alpha +u-y}{\beta }\text{, }&\beta \neq 0\\x\in \mathrm{C}\text{, }&y=u+\alpha \text{ and }\beta =0\end{matrix}\right.
Solve for u
u=-x\beta +y-\alpha
Solve for x
\left\{\begin{matrix}x=-\frac{\alpha +u-y}{\beta }\text{, }&\beta \neq 0\\x\in \mathrm{R}\text{, }&y=u+\alpha \text{ and }\beta =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\alpha +\beta x+u=y
Swap sides so that all variable terms are on the left hand side.
\beta x+u=y-\alpha
Subtract \alpha from both sides.
\beta x=y-\alpha -u
Subtract u from both sides.
\beta x=y-u-\alpha
The equation is in standard form.
\frac{\beta x}{\beta }=\frac{y-u-\alpha }{\beta }
Divide both sides by \beta .
x=\frac{y-u-\alpha }{\beta }
Dividing by \beta undoes the multiplication by \beta .
\alpha +\beta x+u=y
Swap sides so that all variable terms are on the left hand side.
\beta x+u=y-\alpha
Subtract \alpha from both sides.
u=y-\alpha -\beta x
Subtract \beta x from both sides.
\alpha +\beta x+u=y
Swap sides so that all variable terms are on the left hand side.
\beta x+u=y-\alpha
Subtract \alpha from both sides.
\beta x=y-\alpha -u
Subtract u from both sides.
\beta x=y-u-\alpha
The equation is in standard form.
\frac{\beta x}{\beta }=\frac{y-u-\alpha }{\beta }
Divide both sides by \beta .
x=\frac{y-u-\alpha }{\beta }
Dividing by \beta undoes the multiplication by \beta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}