Solve for U (complex solution)
\left\{\begin{matrix}U=-\frac{x-y}{x\left(3-x\right)}\text{, }&x\neq 3\text{ and }x\neq 0\\U\in \mathrm{C}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(y=3\text{ and }x=3\right)\end{matrix}\right.
Solve for U
\left\{\begin{matrix}U=-\frac{x-y}{x\left(3-x\right)}\text{, }&x\neq 3\text{ and }x\neq 0\\U\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(y=3\text{ and }x=3\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{1+6U+9U^{2}-4Uy}+3U+1}{2U}\text{; }x=\frac{-\sqrt{1+6U+9U^{2}-4Uy}+3U+1}{2U}\text{, }&U\neq 0\\x=y\text{, }&U=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{1+6U+9U^{2}-4Uy}+3U+1}{2U}\text{; }x=\frac{-\sqrt{1+6U+9U^{2}-4Uy}+3U+1}{2U}\text{, }&\left(U<0\text{ or }y\leq \frac{\left(3U+1\right)^{2}}{4U}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }U\neq 0\right)\text{ and }\left(U>0\text{ or }\left(U\neq 0\text{ and }y\geq \frac{\left(3U+1\right)^{2}}{4U}\right)\right)\\x=y\text{, }&U=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=x-\left(Ux^{2}-3xU\right)
Use the distributive property to multiply xU by x-3.
y=x-Ux^{2}+3xU
To find the opposite of Ux^{2}-3xU, find the opposite of each term.
x-Ux^{2}+3xU=y
Swap sides so that all variable terms are on the left hand side.
-Ux^{2}+3xU=y-x
Subtract x from both sides.
\left(-x^{2}+3x\right)U=y-x
Combine all terms containing U.
\left(3x-x^{2}\right)U=y-x
The equation is in standard form.
\frac{\left(3x-x^{2}\right)U}{3x-x^{2}}=\frac{y-x}{3x-x^{2}}
Divide both sides by -x^{2}+3x.
U=\frac{y-x}{3x-x^{2}}
Dividing by -x^{2}+3x undoes the multiplication by -x^{2}+3x.
U=\frac{y-x}{x\left(3-x\right)}
Divide y-x by -x^{2}+3x.
y=x-\left(Ux^{2}-3xU\right)
Use the distributive property to multiply xU by x-3.
y=x-Ux^{2}+3xU
To find the opposite of Ux^{2}-3xU, find the opposite of each term.
x-Ux^{2}+3xU=y
Swap sides so that all variable terms are on the left hand side.
-Ux^{2}+3xU=y-x
Subtract x from both sides.
\left(-x^{2}+3x\right)U=y-x
Combine all terms containing U.
\left(3x-x^{2}\right)U=y-x
The equation is in standard form.
\frac{\left(3x-x^{2}\right)U}{3x-x^{2}}=\frac{y-x}{3x-x^{2}}
Divide both sides by -x^{2}+3x.
U=\frac{y-x}{3x-x^{2}}
Dividing by -x^{2}+3x undoes the multiplication by -x^{2}+3x.
U=\frac{y-x}{x\left(3-x\right)}
Divide y-x by -x^{2}+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}