Solve for x_4
\left\{\begin{matrix}x_{4}=-\frac{x}{x^{3}-3x^{2}+y}\text{, }&x\neq 0\text{ and }y\neq -\left(x-3\right)x^{2}\\x_{4}\neq 0\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
yx_{4}=3x^{2}x_{4}-x^{3}x_{4}-x
Variable x_{4} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x_{4}.
yx_{4}-3x^{2}x_{4}=-x^{3}x_{4}-x
Subtract 3x^{2}x_{4} from both sides.
yx_{4}-3x^{2}x_{4}+x^{3}x_{4}=-x
Add x^{3}x_{4} to both sides.
\left(y-3x^{2}+x^{3}\right)x_{4}=-x
Combine all terms containing x_{4}.
\left(x^{3}-3x^{2}+y\right)x_{4}=-x
The equation is in standard form.
\frac{\left(x^{3}-3x^{2}+y\right)x_{4}}{x^{3}-3x^{2}+y}=-\frac{x}{x^{3}-3x^{2}+y}
Divide both sides by y-3x^{2}+x^{3}.
x_{4}=-\frac{x}{x^{3}-3x^{2}+y}
Dividing by y-3x^{2}+x^{3} undoes the multiplication by y-3x^{2}+x^{3}.
x_{4}=-\frac{x}{x^{3}-3x^{2}+y}\text{, }x_{4}\neq 0
Variable x_{4} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}