Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-a\right)x^{2}-bx-c=y
Swap sides so that all variable terms are on the left hand side.
\left(-a\right)x^{2}-c=y+bx
Add bx to both sides.
\left(-a\right)x^{2}=y+bx+c
Add c to both sides.
-ax^{2}=bx+y+c
Reorder the terms.
\left(-x^{2}\right)a=bx+y+c
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{bx+y+c}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{bx+y+c}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-\frac{bx+y+c}{x^{2}}
Divide y+c+bx by -x^{2}.
\left(-a\right)x^{2}-bx-c=y
Swap sides so that all variable terms are on the left hand side.
-bx-c=y-\left(-a\right)x^{2}
Subtract \left(-a\right)x^{2} from both sides.
-bx=y-\left(-a\right)x^{2}+c
Add c to both sides.
-bx=y+ax^{2}+c
Multiply -1 and -1 to get 1.
\left(-x\right)b=ax^{2}+y+c
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{ax^{2}+y+c}{-x}
Divide both sides by -x.
b=\frac{ax^{2}+y+c}{-x}
Dividing by -x undoes the multiplication by -x.
b=-\frac{ax^{2}+y+c}{x}
Divide y+ax^{2}+c by -x.
\left(-a\right)x^{2}-bx-c=y
Swap sides so that all variable terms are on the left hand side.
\left(-a\right)x^{2}-c=y+bx
Add bx to both sides.
\left(-a\right)x^{2}=y+bx+c
Add c to both sides.
-ax^{2}=bx+y+c
Reorder the terms.
\left(-x^{2}\right)a=bx+y+c
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{bx+y+c}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{bx+y+c}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-\frac{bx+y+c}{x^{2}}
Divide y+bx+c by -x^{2}.
\left(-a\right)x^{2}-bx-c=y
Swap sides so that all variable terms are on the left hand side.
-bx-c=y-\left(-a\right)x^{2}
Subtract \left(-a\right)x^{2} from both sides.
-bx=y-\left(-a\right)x^{2}+c
Add c to both sides.
-bx=y+ax^{2}+c
Multiply -1 and -1 to get 1.
\left(-x\right)b=ax^{2}+y+c
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{ax^{2}+y+c}{-x}
Divide both sides by -x.
b=\frac{ax^{2}+y+c}{-x}
Dividing by -x undoes the multiplication by -x.
b=-\frac{ax^{2}+y+c}{x}
Divide y+ax^{2}+c by -x.