Solve for y
y=-\frac{232}{837}\approx -0.277180406
Graph
Share
Copied to clipboard
\frac{y\times 9}{3\times 9+2}=-\frac{8}{93}
Divide y by \frac{3\times 9+2}{9} by multiplying y by the reciprocal of \frac{3\times 9+2}{9}.
\frac{y\times 9}{27+2}=-\frac{8}{93}
Multiply 3 and 9 to get 27.
\frac{y\times 9}{29}=-\frac{8}{93}
Add 27 and 2 to get 29.
y\times 9=-\frac{8}{93}\times 29
Multiply both sides by 29.
y\times 9=\frac{-8\times 29}{93}
Express -\frac{8}{93}\times 29 as a single fraction.
y\times 9=\frac{-232}{93}
Multiply -8 and 29 to get -232.
y\times 9=-\frac{232}{93}
Fraction \frac{-232}{93} can be rewritten as -\frac{232}{93} by extracting the negative sign.
y=\frac{-\frac{232}{93}}{9}
Divide both sides by 9.
y=\frac{-232}{93\times 9}
Express \frac{-\frac{232}{93}}{9} as a single fraction.
y=\frac{-232}{837}
Multiply 93 and 9 to get 837.
y=-\frac{232}{837}
Fraction \frac{-232}{837} can be rewritten as -\frac{232}{837} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}