Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y\times 1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
y+8=\left(\frac{1}{2}x^{2}+x+\frac{1}{2}\right)y
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+1.
y+8=\frac{1}{2}x^{2}y+xy+\frac{1}{2}y
Use the distributive property to multiply \frac{1}{2}x^{2}+x+\frac{1}{2} by y.
y+8-\frac{1}{2}x^{2}y=xy+\frac{1}{2}y
Subtract \frac{1}{2}x^{2}y from both sides.
y+8-\frac{1}{2}x^{2}y-xy=\frac{1}{2}y
Subtract xy from both sides.
y+8-\frac{1}{2}x^{2}y-xy-\frac{1}{2}y=0
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}y+8-\frac{1}{2}x^{2}y-xy=0
Combine y and -\frac{1}{2}y to get \frac{1}{2}y.
\frac{1}{2}y-\frac{1}{2}x^{2}y-xy=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(\frac{1}{2}-\frac{1}{2}x^{2}-x\right)y=-8
Combine all terms containing y.
\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y=-8
The equation is in standard form.
\frac{\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y}{-\frac{x^{2}}{2}-x+\frac{1}{2}}=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Divide both sides by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Dividing by \frac{1}{2}-\frac{1}{2}x^{2}-x undoes the multiplication by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{16}{1-2x-x^{2}}
Divide -8 by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y\times 1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
y+8=\left(\frac{1}{2}x^{2}+x+\frac{1}{2}\right)y
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+1.
y+8=\frac{1}{2}x^{2}y+xy+\frac{1}{2}y
Use the distributive property to multiply \frac{1}{2}x^{2}+x+\frac{1}{2} by y.
y+8-\frac{1}{2}x^{2}y=xy+\frac{1}{2}y
Subtract \frac{1}{2}x^{2}y from both sides.
y+8-\frac{1}{2}x^{2}y-xy=\frac{1}{2}y
Subtract xy from both sides.
y+8-\frac{1}{2}x^{2}y-xy-\frac{1}{2}y=0
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}y+8-\frac{1}{2}x^{2}y-xy=0
Combine y and -\frac{1}{2}y to get \frac{1}{2}y.
\frac{1}{2}y-\frac{1}{2}x^{2}y-xy=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(\frac{1}{2}-\frac{1}{2}x^{2}-x\right)y=-8
Combine all terms containing y.
\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y=-8
The equation is in standard form.
\frac{\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y}{-\frac{x^{2}}{2}-x+\frac{1}{2}}=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Divide both sides by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Dividing by \frac{1}{2}-\frac{1}{2}x^{2}-x undoes the multiplication by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{16}{1-2x-x^{2}}
Divide -8 by \frac{1}{2}-\frac{1}{2}x^{2}-x.