Solve for y (complex solution)
y=-\frac{16}{1-2x-x^{2}}
x\neq \sqrt{2}-1\text{ and }x\neq -\left(\sqrt{2}+1\right)
Solve for y
y=-\frac{16}{1-2x-x^{2}}
x\neq \sqrt{2}-1\text{ and }x\neq -\sqrt{2}-1
Solve for x (complex solution)
x=\sqrt{2+\frac{16}{y}}-1
x=-\sqrt{2+\frac{16}{y}}-1\text{, }y\neq 0
Solve for x
\left\{\begin{matrix}x=-\sqrt{2+\frac{16}{y}}-1\text{; }x=\sqrt{2+\frac{16}{y}}-1\text{, }&y>0\\x=-\sqrt{2+\frac{16}{y}}-1\text{; }x=\sqrt{2+\frac{16}{y}}-1\text{, }&y\leq -8\end{matrix}\right.
Graph
Share
Copied to clipboard
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y\times 1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
y+8=\left(\frac{1}{2}x^{2}+x+\frac{1}{2}\right)y
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+1.
y+8=\frac{1}{2}x^{2}y+xy+\frac{1}{2}y
Use the distributive property to multiply \frac{1}{2}x^{2}+x+\frac{1}{2} by y.
y+8-\frac{1}{2}x^{2}y=xy+\frac{1}{2}y
Subtract \frac{1}{2}x^{2}y from both sides.
y+8-\frac{1}{2}x^{2}y-xy=\frac{1}{2}y
Subtract xy from both sides.
y+8-\frac{1}{2}x^{2}y-xy-\frac{1}{2}y=0
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}y+8-\frac{1}{2}x^{2}y-xy=0
Combine y and -\frac{1}{2}y to get \frac{1}{2}y.
\frac{1}{2}y-\frac{1}{2}x^{2}y-xy=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(\frac{1}{2}-\frac{1}{2}x^{2}-x\right)y=-8
Combine all terms containing y.
\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y=-8
The equation is in standard form.
\frac{\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y}{-\frac{x^{2}}{2}-x+\frac{1}{2}}=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Divide both sides by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Dividing by \frac{1}{2}-\frac{1}{2}x^{2}-x undoes the multiplication by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{16}{1-2x-x^{2}}
Divide -8 by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y\times 1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
y+8=\frac{1}{2}\left(x^{2}+2x+1\right)y
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
y+8=\left(\frac{1}{2}x^{2}+x+\frac{1}{2}\right)y
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+1.
y+8=\frac{1}{2}x^{2}y+xy+\frac{1}{2}y
Use the distributive property to multiply \frac{1}{2}x^{2}+x+\frac{1}{2} by y.
y+8-\frac{1}{2}x^{2}y=xy+\frac{1}{2}y
Subtract \frac{1}{2}x^{2}y from both sides.
y+8-\frac{1}{2}x^{2}y-xy=\frac{1}{2}y
Subtract xy from both sides.
y+8-\frac{1}{2}x^{2}y-xy-\frac{1}{2}y=0
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}y+8-\frac{1}{2}x^{2}y-xy=0
Combine y and -\frac{1}{2}y to get \frac{1}{2}y.
\frac{1}{2}y-\frac{1}{2}x^{2}y-xy=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(\frac{1}{2}-\frac{1}{2}x^{2}-x\right)y=-8
Combine all terms containing y.
\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y=-8
The equation is in standard form.
\frac{\left(-\frac{x^{2}}{2}-x+\frac{1}{2}\right)y}{-\frac{x^{2}}{2}-x+\frac{1}{2}}=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Divide both sides by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{8}{-\frac{x^{2}}{2}-x+\frac{1}{2}}
Dividing by \frac{1}{2}-\frac{1}{2}x^{2}-x undoes the multiplication by \frac{1}{2}-\frac{1}{2}x^{2}-x.
y=-\frac{16}{1-2x-x^{2}}
Divide -8 by \frac{1}{2}-\frac{1}{2}x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}