Solve for x
x=\frac{y+12}{6}
Solve for y
y=6\left(x-2\right)
Graph
Share
Copied to clipboard
y+6=6x-6
Use the distributive property to multiply 6 by x-1.
6x-6=y+6
Swap sides so that all variable terms are on the left hand side.
6x=y+6+6
Add 6 to both sides.
6x=y+12
Add 6 and 6 to get 12.
\frac{6x}{6}=\frac{y+12}{6}
Divide both sides by 6.
x=\frac{y+12}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{y}{6}+2
Divide y+12 by 6.
y+6=6x-6
Use the distributive property to multiply 6 by x-1.
y=6x-6-6
Subtract 6 from both sides.
y=6x-12
Subtract 6 from -6 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}