Solve for y
y=\frac{-1+3\sqrt{7}i}{8}\approx -0.125+0.992156742i
y=\frac{-3\sqrt{7}i-1}{8}\approx -0.125-0.992156742i
Share
Copied to clipboard
y+4+4y^{2}=0
Add 4y^{2} to both sides.
4y^{2}+y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-1±\sqrt{1^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 4\times 4}}{2\times 4}
Square 1.
y=\frac{-1±\sqrt{1-16\times 4}}{2\times 4}
Multiply -4 times 4.
y=\frac{-1±\sqrt{1-64}}{2\times 4}
Multiply -16 times 4.
y=\frac{-1±\sqrt{-63}}{2\times 4}
Add 1 to -64.
y=\frac{-1±3\sqrt{7}i}{2\times 4}
Take the square root of -63.
y=\frac{-1±3\sqrt{7}i}{8}
Multiply 2 times 4.
y=\frac{-1+3\sqrt{7}i}{8}
Now solve the equation y=\frac{-1±3\sqrt{7}i}{8} when ± is plus. Add -1 to 3i\sqrt{7}.
y=\frac{-3\sqrt{7}i-1}{8}
Now solve the equation y=\frac{-1±3\sqrt{7}i}{8} when ± is minus. Subtract 3i\sqrt{7} from -1.
y=\frac{-1+3\sqrt{7}i}{8} y=\frac{-3\sqrt{7}i-1}{8}
The equation is now solved.
y+4+4y^{2}=0
Add 4y^{2} to both sides.
y+4y^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
4y^{2}+y=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4y^{2}+y}{4}=-\frac{4}{4}
Divide both sides by 4.
y^{2}+\frac{1}{4}y=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}+\frac{1}{4}y=-1
Divide -4 by 4.
y^{2}+\frac{1}{4}y+\left(\frac{1}{8}\right)^{2}=-1+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{4}y+\frac{1}{64}=-1+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{1}{4}y+\frac{1}{64}=-\frac{63}{64}
Add -1 to \frac{1}{64}.
\left(y+\frac{1}{8}\right)^{2}=-\frac{63}{64}
Factor y^{2}+\frac{1}{4}y+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{63}{64}}
Take the square root of both sides of the equation.
y+\frac{1}{8}=\frac{3\sqrt{7}i}{8} y+\frac{1}{8}=-\frac{3\sqrt{7}i}{8}
Simplify.
y=\frac{-1+3\sqrt{7}i}{8} y=\frac{-3\sqrt{7}i-1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}