Solve for x
x=\frac{5y}{2}+13
Solve for y
y=\frac{2\left(x-13\right)}{5}
Graph
Share
Copied to clipboard
y+4=\frac{2}{5}x-\frac{6}{5}
Use the distributive property to multiply \frac{2}{5} by x-3.
\frac{2}{5}x-\frac{6}{5}=y+4
Swap sides so that all variable terms are on the left hand side.
\frac{2}{5}x=y+4+\frac{6}{5}
Add \frac{6}{5} to both sides.
\frac{2}{5}x=y+\frac{26}{5}
Add 4 and \frac{6}{5} to get \frac{26}{5}.
\frac{\frac{2}{5}x}{\frac{2}{5}}=\frac{y+\frac{26}{5}}{\frac{2}{5}}
Divide both sides of the equation by \frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{26}{5}}{\frac{2}{5}}
Dividing by \frac{2}{5} undoes the multiplication by \frac{2}{5}.
x=\frac{5y}{2}+13
Divide y+\frac{26}{5} by \frac{2}{5} by multiplying y+\frac{26}{5} by the reciprocal of \frac{2}{5}.
y+4=\frac{2}{5}x-\frac{6}{5}
Use the distributive property to multiply \frac{2}{5} by x-3.
y=\frac{2}{5}x-\frac{6}{5}-4
Subtract 4 from both sides.
y=\frac{2}{5}x-\frac{26}{5}
Subtract 4 from -\frac{6}{5} to get -\frac{26}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}