Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y+3=\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-2\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
y+3=\frac{2\sqrt{3}}{3}\left(x-2\right)
The square of \sqrt{3} is 3.
y+3=\frac{2\sqrt{3}\left(x-2\right)}{3}
Express \frac{2\sqrt{3}}{3}\left(x-2\right) as a single fraction.
y+3=\frac{2\sqrt{3}x-4\sqrt{3}}{3}
Use the distributive property to multiply 2\sqrt{3} by x-2.
\frac{2\sqrt{3}x-4\sqrt{3}}{3}=y+3
Swap sides so that all variable terms are on the left hand side.
2\sqrt{3}x-4\sqrt{3}=3y+9
Multiply both sides of the equation by 3.
2\sqrt{3}x=3y+9+4\sqrt{3}
Add 4\sqrt{3} to both sides.
2\sqrt{3}x=3y+4\sqrt{3}+9
The equation is in standard form.
\frac{2\sqrt{3}x}{2\sqrt{3}}=\frac{3y+4\sqrt{3}+9}{2\sqrt{3}}
Divide both sides by 2\sqrt{3}.
x=\frac{3y+4\sqrt{3}+9}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
x=\frac{\sqrt{3}y}{2}+\frac{3\sqrt{3}}{2}+2
Divide 3y+9+4\sqrt{3} by 2\sqrt{3}.