Solve for x
x=\frac{\sqrt{3}\left(y+3\right)+4}{2}
Solve for y
y=\frac{-2\sqrt{3}\left(2-x\right)-9}{3}
Graph
Share
Copied to clipboard
y+3=\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-2\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
y+3=\frac{2\sqrt{3}}{3}\left(x-2\right)
The square of \sqrt{3} is 3.
y+3=\frac{2\sqrt{3}\left(x-2\right)}{3}
Express \frac{2\sqrt{3}}{3}\left(x-2\right) as a single fraction.
y+3=\frac{2\sqrt{3}x-4\sqrt{3}}{3}
Use the distributive property to multiply 2\sqrt{3} by x-2.
\frac{2\sqrt{3}x-4\sqrt{3}}{3}=y+3
Swap sides so that all variable terms are on the left hand side.
2\sqrt{3}x-4\sqrt{3}=3y+9
Multiply both sides of the equation by 3.
2\sqrt{3}x=3y+9+4\sqrt{3}
Add 4\sqrt{3} to both sides.
2\sqrt{3}x=3y+4\sqrt{3}+9
The equation is in standard form.
\frac{2\sqrt{3}x}{2\sqrt{3}}=\frac{3y+4\sqrt{3}+9}{2\sqrt{3}}
Divide both sides by 2\sqrt{3}.
x=\frac{3y+4\sqrt{3}+9}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
x=\frac{\sqrt{3}y}{2}+\frac{3\sqrt{3}}{2}+2
Divide 3y+9+4\sqrt{3} by 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}