y + 2 y = ( x + d x )
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{3y}{x}-1\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{3y}{d+1}\text{, }&d\neq -1\\x\in \mathrm{C}\text{, }&y=0\text{ and }d=-1\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{3y}{x}-1\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{3y}{d+1}\text{, }&d\neq -1\\x\in \mathrm{R}\text{, }&y=0\text{ and }d=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
3y=x+dx
Combine y and 2y to get 3y.
x+dx=3y
Swap sides so that all variable terms are on the left hand side.
dx=3y-x
Subtract x from both sides.
xd=3y-x
The equation is in standard form.
\frac{xd}{x}=\frac{3y-x}{x}
Divide both sides by x.
d=\frac{3y-x}{x}
Dividing by x undoes the multiplication by x.
d=\frac{3y}{x}-1
Divide 3y-x by x.
3y=x+dx
Combine y and 2y to get 3y.
x+dx=3y
Swap sides so that all variable terms are on the left hand side.
\left(1+d\right)x=3y
Combine all terms containing x.
\left(d+1\right)x=3y
The equation is in standard form.
\frac{\left(d+1\right)x}{d+1}=\frac{3y}{d+1}
Divide both sides by 1+d.
x=\frac{3y}{d+1}
Dividing by 1+d undoes the multiplication by 1+d.
3y=x+dx
Combine y and 2y to get 3y.
x+dx=3y
Swap sides so that all variable terms are on the left hand side.
dx=3y-x
Subtract x from both sides.
xd=3y-x
The equation is in standard form.
\frac{xd}{x}=\frac{3y-x}{x}
Divide both sides by x.
d=\frac{3y-x}{x}
Dividing by x undoes the multiplication by x.
d=\frac{3y}{x}-1
Divide 3y-x by x.
3y=x+dx
Combine y and 2y to get 3y.
x+dx=3y
Swap sides so that all variable terms are on the left hand side.
\left(1+d\right)x=3y
Combine all terms containing x.
\left(d+1\right)x=3y
The equation is in standard form.
\frac{\left(d+1\right)x}{d+1}=\frac{3y}{d+1}
Divide both sides by 1+d.
x=\frac{3y}{d+1}
Dividing by 1+d undoes the multiplication by 1+d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}