Solve for x
x=\frac{9y}{4}+\frac{7}{2}
Solve for y
y=\frac{4x-14}{9}
Graph
Share
Copied to clipboard
y+2=\frac{4}{9}x+\frac{4}{9}
Use the distributive property to multiply \frac{4}{9} by x+1.
\frac{4}{9}x+\frac{4}{9}=y+2
Swap sides so that all variable terms are on the left hand side.
\frac{4}{9}x=y+2-\frac{4}{9}
Subtract \frac{4}{9} from both sides.
\frac{4}{9}x=y+\frac{14}{9}
Subtract \frac{4}{9} from 2 to get \frac{14}{9}.
\frac{\frac{4}{9}x}{\frac{4}{9}}=\frac{y+\frac{14}{9}}{\frac{4}{9}}
Divide both sides of the equation by \frac{4}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{14}{9}}{\frac{4}{9}}
Dividing by \frac{4}{9} undoes the multiplication by \frac{4}{9}.
x=\frac{9y}{4}+\frac{7}{2}
Divide y+\frac{14}{9} by \frac{4}{9} by multiplying y+\frac{14}{9} by the reciprocal of \frac{4}{9}.
y+2=\frac{4}{9}x+\frac{4}{9}
Use the distributive property to multiply \frac{4}{9} by x+1.
y=\frac{4}{9}x+\frac{4}{9}-2
Subtract 2 from both sides.
y=\frac{4}{9}x-\frac{14}{9}
Subtract 2 from \frac{4}{9} to get -\frac{14}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}