Solve for x
x=-\frac{y}{6}+\frac{49}{2}
Solve for y
y=147-6x
Graph
Share
Copied to clipboard
y+15=-6\left(x-27\right)
Divide 42 by 7 to get 6.
y+15=-6x+162
Use the distributive property to multiply -6 by x-27.
-6x+162=y+15
Swap sides so that all variable terms are on the left hand side.
-6x=y+15-162
Subtract 162 from both sides.
-6x=y-147
Subtract 162 from 15 to get -147.
\frac{-6x}{-6}=\frac{y-147}{-6}
Divide both sides by -6.
x=\frac{y-147}{-6}
Dividing by -6 undoes the multiplication by -6.
x=-\frac{y}{6}+\frac{49}{2}
Divide y-147 by -6.
y+15=-6\left(x-27\right)
Divide 42 by 7 to get 6.
y+15=-6x+162
Use the distributive property to multiply -6 by x-27.
y=-6x+162-15
Subtract 15 from both sides.
y=-6x+147
Subtract 15 from 162 to get 147.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}